Multiomics Explained
Multiomics, multi-omics, integrative omics, "panomics" or "pan-omics" is a biological analysis approach in which the data sets are multiple "omes", such as the genome, proteome, transcriptome, epigenome, metabolome, and microbiome (i.e., a meta-genome and/or meta-transcriptome, depending upon how it is sequenced);[1] [2] [3] in other words, the use of multiple omics technologies to study life in a concerted way. By combining these "omes", scientists can analyze complex biological big data to find novel associations between biological entities, pinpoint relevant biomarkers and build elaborate markers of disease and physiology. In doing so, multiomics integrates diverse omics data to find a coherently matching geno-pheno-envirotype relationship or association.[4] The OmicTools service lists more than 99 softwares related to multiomic data analysis, as well as more than 99 databases on the topic.
Systems biology approaches are often based upon the use of panomic analysis data.[5] [6] The American Society of Clinical Oncology (ASCO) defines panomics as referring to "the interaction of all biologicalfunctions within a cell and with other body functions, combining data collected by targeted tests ... and global assays (such as genome sequencing) with other patient-specific information."[7]
Single-cell multiomics
A branch of the field of multiomics is the analysis of multilevel single-cell data, called single-cell multiomics.[8] [9] This approach gives us an unprecedent resolution to look at multilevel transitions in health and disease at the single cell level. An advantage in relation to bulk analysis is to mitigate confounding factors derived from cell to cell variation, allowing the uncovering of heterogeneous tissue architectures.
Methods for parallel single-cell genomic and transcriptomic analysis can be based on simultaneous amplification[10] or physical separation of RNA and genomic DNA.[11] They allow insights that cannot be gathered solely from transcriptomic analysis, as RNA data do not contain non-coding genomic regions and information regarding copy-number variation, for example. An extension of this methodology is the integration of single-cell transcriptomes to single-cell methylomes, combining single-cell bisulfite sequencing[12] [13] to single cell RNA-Seq.[14] Other techniques to query the epigenome, as single-cell ATAC-Seq[15] and single-cell Hi-C[16] also exist.
A different, but related, challenge is the integration of proteomic and transcriptomic data.[17] [18] One approach to perform such measurement is to physically separate single-cell lysates in two, processing half for RNA, and half for proteins. The protein content of lysates can be measured by proximity extension assays (PEA), for example, which use DNA-barcoded antibodies.[19] A different approach uses a combination of heavy-metal RNA probes and protein antibodies to adapt mass cytometry for multiomic analysis.
Multiomics and machine learning
In parallel to the advances in highthroughput biology, machine learning applications to biomedical data analysis are flourishing. The integration of multi-omics data analysis and machine learning has led to the discovery of new biomarkers.[20] [21] [22] For example, one of the methods of the mixOmics project implements a method based on sparse Partial Least Squares regression for selection of features (putative biomarkers).[23] A unified and flexible statistical framewok for heterogeneous data integration called "Regularized Generalized Canonical Correlation Analysis" (RGCCA [24] [25] [26] [27]) enables identifying such putative biomarkers. This framework is implemented and made freely avalaible within the RGCCA R package .
Multiomics in health and disease
Multiomics currently holds a promise to fill gaps in the understanding of human health and disease, and many researchers are working on ways to generate and analyze disease-related data.[28] The applications range from understanding host-pathogen interactions and infectious diseases,[29] [30] cancer,[31] to understanding better chronic and complex non-communicable diseases[32] and improving personalized medicine.[33]
Integrated Human Microbiome Project
The second phase of the $170 million Human Microbiome Project was focused on integrating patient data to different omic datasets, considering host genetics, clinical information and microbiome composition.[34] [35] The phase one focused on characterization of communities in different body sites. Phase 2 focused in the integration of multiomic data from host & microbiome to human diseases. Specifically, the project used multiomics to improve the understanding of the interplay of gut and nasal microbiomes with type 2 diabetes,[36] gut microbiomes and inflammatory bowel disease[37] and vaginal microbiomes and pre-term birth.[38]
Systems Immunology
The complexity of interactions in the human immune system has prompted the generation of a wealth of immunology-related multi-scale omic data.[39] Multi-omic data analysis has been employed to gather novel insights about the immune response to infectious diseases, such as pediatric chikungunya,[40] as well as noncommunicable autoimmune diseases.[41] Integrative omics has also been employed strongly to understand effectiveness and side effects of vaccines, a field called systems vaccinology.[42] For example, multiomics was essential to uncover the association of changes in plasma metabolites and immune system transcriptome on response to vaccination against herpes zoster.[43]
List of softwares for multi-omic analysis
The Bioconductor project curates a variety of R packages aimed at integrating omic data:
The RGCCA package implements a versatile framework for data integration. This package is freely available on the Comprehensive R Archive Network (CRAN).
The OmicTools[47] database further highlights R packages and othertools for multi omic data analysis:
- PaintOmics, a web resource for visualization of multi-omics datasets[48] [49]
- SIGMA, a Java program focused on integrated analysis of cancer datasets[50]
- iOmicsPASS, a tool in C++ for multiomic-based phenotype prediction[51]
- Grimon, an R graphical interface for visualization of multiomic data[52]
- Omics Pipe, a framework in Python for reproducibly automating multiomic data analysis[53]
Multiomic Databases
A major limitation of classical omic studies is the isolation of only one level of biological complexity. For example, transcriptomic studies may provide information at the transcript level, but many different entities contribute to the biological state of the sample (genomic variants, post-translational modifications, metabolic products, interacting organisms, among others). With the advent of high-throughput biology, it is becoming increasingly affordable to make multiple measurements, allowing transdomain (e.g. RNA and protein levels) correlations and inferences. These correlations aid the construction or more complete biological networks, filling gaps in our knowledge.
Integration of data, however, is not an easy task. To facilitate the process, groups have curated database and pipelines to systematically explore multiomic data:
- Multi-Omics Profiling Expression Database (MOPED),[54] integrating diverse animal models,
- The Pancreatic Expression Database, integrating data related to pancreatic tissue,
- LinkedOmics,[55] [56] connecting data from TCGA cancer datasets,
- OASIS,[57] a web-based resource for general cancer studies,
- BCIP,[58] a platform for breast cancer studies,
- C/VDdb,[59] connecting data from several cardiovascular disease studies,
- ZikaVR,[60] a multiomic resource for Zika virus data
- Ecomics,[61] a normalized multi-omic database for Escherichia coli data,
- GourdBase,[62] integrating data from studies with gourd,
- MODEM,[63] a database for multilevel maize data,
- SoyKB,[64] a database for multilevel soybean data,
- ProteomicsDB,[65] a multi-omics and multi-organism resource for life science research
See also
Notes and References
- Bersanelli. Matteo. Mosca. Ettore. Remondini. Daniel. Giampieri. Enrico. Sala. Claudia. Castellani. Gastone. Milanesi. Luciano. Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics. 1 January 2016. 17. 2. S15. 10.1186/s12859-015-0857-9. 1471-2105. 26821531. 4959355 . free .
- Bock. Christoph. Farlik. Matthias. Sheffield. Nathan C.. Multi-Omics of Single Cells: Strategies and Applications. Trends in Biotechnology. August 2016. 34. 8. 605–608. 10.1016/j.tibtech.2016.04.004. 27212022. 4959511.
- Vilanova. Cristina. Porcar. Manuel. Are multi-omics enough?. Nature Microbiology. 26 July 2016. 1. 8. 16101. 10.1038/nmicrobiol.2016.101. 27573112. 3835720.
- Tarazona, S., Balzano-Nogueira, L., & Conesa, A. (2018). Multiomics Data Integration in Time Series Experiments.
- http://psb.stanford.edu/cfp-cp.html PSB'14 Cancer Panomics Session
- http://am.asco.org/molecular-landscape-cancer-using-panomics-drive-change The Molecular Landscape of Cancer: Using Panomics to Drive Change
- Book: Accelerating Progress Against Cancer: ASCO's blueprint for transforming clinical and translational cancer research. 13 September 2013. 2011. American Society of Clinical Oncology. 28. Glossary.
- 10.1016/j.tig.2016.12.003 . Single-Cell Multiomics: Multiple Measurements from Single Cells . 2017 . MacAulay . Iain C. . Ponting . Chris P. . Voet . Thierry . Trends in Genetics . 33 . 2 . 155–168 . 28089370 . 5303816 .
- Hu. Youjin. An. Qin. Sheu. Katherine. Trejo. Brandon. Fan. Shuxin. Guo. Ying. 2018-04-20. Single Cell Multi-Omics Technology: Methodology and Application. Frontiers in Cell and Developmental Biology. 6. 28. 10.3389/fcell.2018.00028. 29732369. 5919954. 2296-634X. free.
- Integrated genome and transcriptome sequencing of the same cell. Kester, Lennart Spanjaard, Bastiaan Bienko, Magda van Oudenaarden, Alexander Dey, Siddharth S. Nature Biotechnology. 2015. 33. 3. 285–289. 10.1038/nbt.3129. 25599178. 4374170. 931063996.
- Macaulay. Iain C. Teng. Mabel J. Haerty. Wilfried. Kumar. Parveen. Ponting. Chris P. Voet. Thierry. 2016-09-29. Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq. Nature Protocols. 11. 11. 2081–2103. 10.1038/nprot.2016.138. 27685099. 1754-2189. 20.500.11820/015ce29d-7e2d-42c8-82fa-cb1290b761c0. 24351548. free.
- Tang. Fuchou. Wen. Lu. Li. Xianlong. Wu. Xinglong. Zhu. Ping. Guo. Hongshan. 2013-12-01. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Research. 23. 12. 2126–2135. 10.1101/gr.161679.113. 1088-9051. 24179143. 3847781.
- Kelsey. Gavin. Reik. Wolf. Stegle. Oliver. Andrews. Simon R.. Julian Peat. Saadeh. Heba. Krueger. Felix. Angermueller. Christof. Lee. Heather J.. August 2014. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nature Methods. 11. 8. 817–820. 10.1038/nmeth.3035. 25042786. 4117646. 1548-7105.
- Angermueller. Christof. Clark. Stephen J. Lee. Heather J. Macaulay. Iain C. Teng. Mabel J. Hu. Tim Xiaoming. Krueger. Felix. Smallwood. Sébastien A. Ponting. Chris P. 2016-01-11. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nature Methods. 13. 3. 229–232. 10.1038/nmeth.3728. 26752769. 4770512. 1548-7091.
- Greenleaf. William J.. Chang. Howard Y.. Snyder. Michael P.. Michael L. Gonzales. Ruff. Dave. Litzenburger. Ulrike M.. Wu. Beijing. Buenrostro. Jason D.. July 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 523. 7561. 486–490. 10.1038/nature14590. 26083756. 4685948. 1476-4687. 2015Natur.523..486B.
- Fraser. Peter. Tanay. Amos. Laue. Ernest D.. Dean. Wendy. Yaffe. Eitan. Schoenfelder. Stefan. Stevens. Tim J.. Lubling. Yaniv. Nagano. Takashi. October 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 502. 7469. 59–64. 10.1038/nature12593. 24067610. 3869051. 1476-4687. 2013Natur.502...59N.
- Darmanis. Spyros. Gallant. Caroline Julie. Marinescu. Voichita Dana. Niklasson. Mia. Segerman. Anna. Flamourakis. Georgios. Fredriksson. Simon. Assarsson. Erika. Lundberg. Martin. 2016-01-12. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells. Cell Reports. 14. 2. 380–389. 10.1016/j.celrep.2015.12.021. 26748716. 4713867. 2211-1247.
- Gherardini. Pier Federico. Nolan. Garry P.. Chen. Shih-Yu. Hsieh. Elena W. Y.. Zunder. Eli R.. Bava. Felice-Alessio. Frei. Andreas P.. March 2016. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nature Methods. 13. 3. 269–275. 10.1038/nmeth.3742. 26808670. 4767631. 1548-7105.
- Assarsson. Erika. Lundberg. Martin. Holmquist. Göran. Björkesten. Johan. Bucht Thorsen. Stine. Ekman. Daniel. Eriksson. Anna. Rennel Dickens. Emma. Ohlsson. Sandra. 2014-04-22. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability. PLOS ONE. 9. 4. e95192. 10.1371/journal.pone.0095192. 24755770. 3995906. 1932-6203. 2014PLoSO...995192A. free.
- Garmire. Lana X.. Chaudhary. Kumardeep. Huang. Sijia. 2017. More Is Better: Recent Progress in Multi-Omics Data Integration Methods. Frontiers in Genetics. English. 8. 84. 10.3389/fgene.2017.00084. 28670325. 1664-8021. 5472696. free.
- Tagkopoulos. Ilias. Kim. Minseung. 2018. Data integration and predictive modeling methods for multi-omics datasets. Molecular Omics. 14. 1. 8–25. 10.1039/C7MO00051K. 29725673.
- Lin. Eugene. Lane. Hsien-Yuan. 2017-01-20. Machine learning and systems genomics approaches for multi-omics data. Biomarker Research. 5. 1. 2. 10.1186/s40364-017-0082-y. 28127429. 2050-7771. 5251341 . free .
- mixOmics: an R package for 'omics feature selection and multiple data integration. Rohart. Florian. Gautier. Benoît. 2017-02-14. Singh. Amrit. Lê Cao. Kim-Anh. PLOS Computational Biology. 13. 11. e1005752. 10.1371/journal.pcbi.1005752. 10.1101/108597. 29099853. 5687754. 2017PLSCB..13E5752R . free .
- Tenenhaus . Arthur . Tenenhaus . Michel . 2011-03-17 . Regularized Generalized Canonical Correlation Analysis . Psychometrika . 76 . 2 . 257–284 . 10.1007/s11336-011-9206-8 . 0033-3123.
- Tenenhaus . A. . Philippe . C. . Guillemot . V. . Le Cao . K.-A. . Grill . J. . Frouin . V. . 2014-02-17 . Variable selection for generalized canonical correlation analysis . Biostatistics . 15 . 3 . 569–583 . 10.1093/biostatistics/kxu001 . 1465-4644. free .
- Tenenhaus . Arthur . Philippe . Cathy . Frouin . Vincent . October 2015 . Kernel Generalized Canonical Correlation Analysis . Computational Statistics & Data Analysis . 90 . 114–131 . 10.1016/j.csda.2015.04.004 . 0167-9473.
- Tenenhaus . Michel . Tenenhaus . Arthur . Groenen . Patrick J. F. . 2017-05-23 . Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods . Psychometrika . 82 . 3 . 737–777 . 10.1007/s11336-017-9573-x . 0033-3123.
- Hasin. Yehudit. Seldin. Marcus. Lusis. Aldons. 2017-05-05. Multi-omics approaches to disease. Genome Biology. 18. 1. 83. 10.1186/s13059-017-1215-1. 28476144. 5418815. 1474-760X . free .
- Khan. Mohd M.. Ernst. Orna. Manes. Nathan P.. Oyler. Benjamin L.. Fraser. Iain D. C.. Goodlett. David R.. Nita-Lazar. Aleksandra. 2019-03-11. Multi-Omics Strategies Uncover Host–Pathogen Interactions. ACS Infectious Diseases. 5. 4. 493–505. 10.1021/acsinfecdis.9b00080. 30857388. 75137107. 2373-8227.
- Aderem. Alan. Adkins. Joshua N.. Ansong. Charles. Galagan. James. Kaiser. Shari. Korth. Marcus J.. Law. G. Lynn. McDermott. Jason G.. Proll. Sean C.. 2011-02-01. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm. mBio. 2. 1. e00325-10. 10.1128/mbio.00325-10. 21285433. 3034460. 2150-7511.
- Mouchtouris . N . Smit . RD . Piper . K . Prashant . G . Evans . JJ . Karsy . M . A review of multiomics platforms in pituitary adenoma pathogenesis. . Frontiers in Bioscience (Landmark Edition) . 4 March 2022 . 27 . 3 . 77 . 10.31083/j.fbl2703077 . 35345309. 247560386 . free .
- Yan. Jingwen. Risacher. Shannon L. Shen. Li. Saykin. Andrew J.. 2017-06-30. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Briefings in Bioinformatics. 19. 6. 1370–1381. 10.1093/bib/bbx066. 28679163. 6454489. 1467-5463.
- He. Feng Q.. Ollert. Markus. Balling. Rudi. Bode. Sebastian F. N.. Delhalle. Sylvie. 2018-02-06. A roadmap towards personalized immunology. npj Systems Biology and Applications. 4. 1. 9. 10.1038/s41540-017-0045-9. 29423275. 5802799. 2056-7189.
- Proctor. Lita M.. Creasy. Heather H.. Fettweis. Jennifer M.. Lloyd-Price. Jason. Mahurkar. Anup. Zhou. Wenyu. Buck. Gregory A.. Snyder. Michael P.. Strauss. Jerome F.. May 2019. The Integrative Human Microbiome Project. Nature. 569. 7758. 641–648. 10.1038/s41586-019-1238-8. 31142853. 6784865. 1476-4687. 2019Natur.569..641I.
- 2019-05-29. After the Integrative Human Microbiome Project, what's next for the microbiome community?. Nature. 569. 7758. 599. 10.1038/d41586-019-01674-w. 31142868. 2019Natur.569Q.599.. 169035865. free.
- Snyder. Michael. Weinstock. George M.. Sodergren. Erica. McLaughlin. Tracey. Tse. David. Rost. Hannes. Piening. Brian. Kukurba. Kim. Rose. Sophia Miryam Schüssler-Fiorenza. May 2019. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature. 569. 7758. 663–671. 10.1038/s41586-019-1236-x. 31142858. 6666404. 1476-4687. 2019Natur.569..663Z.
- Huttenhower. Curtis. Xavier. Ramnik J.. Vlamakis. Hera. Franzosa. Eric A.. Clish. Clary B.. Winter. Harland S.. Stappenbeck. Thaddeus S.. Petrosino. Joseph F.. McGovern. Dermot P. B.. May 2019. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 569. 7758. 655–662. 10.1038/s41586-019-1237-9. 31142855. 6650278. 1476-4687. 2019Natur.569..655L.
- Buck. Gregory A.. Strauss. Jerome F.. Jefferson. Kimberly K.. Hendricks-Muñoz. Karen D.. Wijesooriya. N. Romesh. Rubens. Craig E.. Gravett. Michael G.. Sexton. Amber L.. Chaffin. Donald O.. June 2019. The vaginal microbiome and preterm birth. Nature Medicine. 25. 6. 1012–1021. 10.1038/s41591-019-0450-2. 31142849. 6750801. 1546-170X.
- Kidd. Brian A. Peters. Lauren A. Schadt. Eric E. Dudley. Joel T. 2014-01-21. Unifying immunology with informatics and multiscale biology. Nature Immunology. 15. 2. 118–127. 10.1038/ni.2787. 24448569. 4345400. 1529-2908.
- Harris. Eva. Kasarskis. Andrew. Wolinsky. Steven M.. Suaréz-Fariñas. Mayte. Zhu. Jun. Wang. Li. Balmaseda. Angel. Thomas. Guajira P.. Stewart. Michael G.. 2018-08-01. Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases. Molecular Systems Biology. 14. 8. e7862. 10.15252/msb.20177862. 30150281. 6110311. 1744-4292.
- Firestein. Gary S.. Wang. Wei. Gay. Steffen. Ball. Scott T.. Bartok. Beatrix. Boyle. David L.. Whitaker. John W.. 2015-04-22. Integrative Omics Analysis of Rheumatoid Arthritis Identifies Non-Obvious Therapeutic Targets. PLOS ONE. 10. 4. e0124254. 10.1371/journal.pone.0124254. 25901943. 4406750. 1932-6203. 2015PLoSO..1024254W. free.
- Pulendran. Bali. Li. Shuzhao. Nakaya. Helder I.. 2010-10-29. Systems Vaccinology. Immunity. 33. 4. 516–529. 10.1016/j.immuni.2010.10.006. 21029962. 3001343. 1074-7613.
- Li. Shuzhao. Sullivan. Nicole L.. Rouphael. Nadine. Yu. Tianwei. Banton. Sophia. Maddur. Mohan S.. McCausland. Megan. Chiu. Christopher. Canniff. Jennifer. 2017-05-18. Metabolic Phenotypes of Response to Vaccination in Humans. Cell. 169. 5. 862–877.e17. 10.1016/j.cell.2017.04.026. 28502771. 5711477. 0092-8674.
- Meng. Chen. Kuster. Bernhard. Culhane. Aedín C. Gholami. Amin. 2014. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics. 15. 1. 162. 10.1186/1471-2105-15-162. 24884486. 4053266. 1471-2105 . free .
- Ramos . Marcel . Schiffer . Lucas . Re . Angela . Azhar . Rimsha . Basunia . Azfar . Rodriguez . Carmen . Chan . Tiffany . Chapman . Phil . Davis . Sean R. . Gomez-Cabrero . David . Culhane . Aedin C. . Haibe-Kains . Benjamin . Hansen . Kasper D. . Kodali . Hanish . Louis . Marie S. . Mer . Arvind S. . Riester . Markus . Morgan . Martin . Carey . Vince . Waldron . Levi . Software for the Integration of Multiomics Experiments in Bioconductor . Cancer Research . 1 November 2017 . 77 . 21 . e39–e42 . 10.1158/0008-5472.CAN-17-0344. 29092936 . 5679241 .
- Hernandez-Ferrer. Carles. Ruiz-Arenas. Carlos. Beltran-Gomila. Alba. González. Juan R.. 2017-01-17. MultiDataSet: an R package for encapsulating multiple data sets with application to omic data integration. BMC Bioinformatics. 18. 1. 36. 10.1186/s12859-016-1455-1. 28095799. 5240259. 1471-2105 . free .
- Web site: Reap the rewards of a biological insight engine. 2019-06-26. omicX.
- Conesa. Ana. Dopazo. Joaquín. García-López. Federico. García-Alcalde. Fernando. 2011-01-01. Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics. 27. 1. 137–139. 10.1093/bioinformatics/btq594. 21098431. 3008637. 1367-4803.
- Conesa. Ana. Pappas. Georgios J.. Furió-Tarí. Pedro. Balzano-Nogueira. Leandro. Martínez-Mira. Carlos. Tarazona. Sonia. Hernández-de-Diego. Rafael. 2018-07-02. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Research. 46. W1. W503–W509. 10.1093/nar/gky466. 29800320. 6030972. 0305-1048.
- Chari. Raj. Coe. Bradley P.. Wedseltoft. Craig. Benetti. Marie. Wilson. Ian M.. Vucic. Emily A.. MacAulay. Calum. Ng. Raymond T.. Lam. Wan L.. 2008-10-07. SIGMA2: A system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. BMC Bioinformatics. 9. 1. 422. 10.1186/1471-2105-9-422. 18840289. 2571113. 1471-2105 . free .
- Choi. Hyungwon. Ewing. Rob. Choi. Kwok Pui. Fermin. Damian. Koh. Hiromi W. L.. 2018-07-23. iOmicsPASS: a novel method for integration of multi-omics data over biological networks and discovery of predictive subnetworks. bioRxiv. 374520. 10.1101/374520. 92157115.
- Kanai. Masahiro. Maeda. Yuichi. Okada. Yukinori. 2018-06-19. Grimon: graphical interface to visualize multi-omics networks. Bioinformatics. 34. 22. 3934–3936. 10.1093/bioinformatics/bty488. 29931190. 6223372. 1367-4803.
- Su. Andrew I.. Loguercio. Salvatore. Carland. Tristan M.. Ducom. Jean-Christophe. Gioia. Louis. Meißner. Tobias. Fisch. Kathleen M.. 2015-06-01. Omics Pipe: a community-based framework for reproducible multi-omics data analysis. Bioinformatics. 31. 11. 1724–1728. 10.1093/bioinformatics/btv061. 25637560. 4443682. 1367-4803.
- Montague. Elizabeth. Stanberry. Larissa. Higdon. Roger. Janko. Imre. Lee. Elaine. Anderson. Nathaniel. Choiniere. John. Stewart. Elizabeth. Yandl. Gregory. June 2014. MOPED 2.5—An Integrated Multi-Omics Resource: Multi-Omics Profiling Expression Database Now Includes Transcriptomics Data. OMICS: A Journal of Integrative Biology. 18. 6. 335–343. 10.1089/omi.2014.0061. 24910945. 4048574. 1536-2310.
- Zhang. Bing. Wang. Jing. Straub. Peter. Vasaikar. Suhas V.. 2018-01-04. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Research. 46. D1. D956–D963. 10.1093/nar/gkx1090. 29136207. 5753188. 0305-1048.
- Web site: LinkedOmics :: Login. www.linkedomics.org. 2019-06-26.
- Kan. Zhengyan. Rejto. Paul A.. Roberts. Peter. Ding. Ying. AChing. Keith. Wang. Kai. Deng. Shibing. Schefzick. Sabine. Estrella. Heather. January 2016. OASIS: web-based platform for exploring cancer multi-omics data. Nature Methods. 13. 1. 9–10. 10.1038/nmeth.3692. 26716558. 38621277. 1548-7105.
- Wu. Jiaqi. Hu. Shuofeng. Chen. Yaowen. Li. Zongcheng. Zhang. Jian. Yuan. Hanyu. Shi. Qiang. Shao. Ningsheng. Ying. Xiaomin. May 2017. BCIP: a gene-centered platform for identifying potential regulatory genes in breast cancer. Scientific Reports. 7. 1. 45235. 10.1038/srep45235. 28327601. 5361122. 2045-2322. 2017NatSR...745235W.
- Husi. Holger. Patel. Alisha. Fernandes. Marco. 2018-11-12. C/VDdb: A multi-omics expression profiling database for a knowledge-driven approach in cardiovascular disease (CVD). PLOS ONE. 13. 11. e0207371. 10.1371/journal.pone.0207371. 30419069. 6231654. 1932-6203. 2018PLoSO..1307371F. free.
- Gupta. Amit Kumar. Kaur. Karambir. Rajput. Akanksha. Dhanda. Sandeep Kumar. Sehgal. Manika. Khan. Md. Shoaib. Monga. Isha. Dar. Showkat Ahmad. Singh. Sandeep. 2016-09-16. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis. Scientific Reports. 6. 1. 32713. 10.1038/srep32713. 27633273. 5025660. 2045-2322. 2016NatSR...632713G.
- Tagkopoulos. Ilias. Violeta Zorraquino. Rai. Navneet. Kim. Minseung. 2016-10-07. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nature Communications. 7. 13090. 10.1038/ncomms13090. 27713404. 5059772. 2041-1723. 2016NatCo...713090K.
- Li. Guojing. Lu. Zhongfu. Lin. Jiandong. Hu. Yaowen. Yunping Huang. Wang. Baogen. Wu. Xinyi. Wu. Xiaohua. Xu. Pei. 2018-02-26. GourdBase: a genome-centered multi-omics database for the bottle gourd (Lagenaria siceraria), an economically important cucurbit crop. Scientific Reports. 8. 1. 3604. 10.1038/s41598-018-22007-3. 29483591. 5827520. 2045-2322. 2018NatSR...8.3604W.
- Liu. Haijun. Wang. Fan. Xiao. Yingjie. Tian. Zonglin. Wen. Weiwei. Zhang. Xuehai. Chen. Xi. Liu. Nannan. Li. Wenqiang. 2016. MODEM: multi-omics data envelopment and mining in maize. Database. 2016. baw117. 10.1093/database/baw117. 27504011. 4976297. 1758-0463.
- Xu. Dong. Nguyen. Henry T.. Stacey. Gary. Gaudiello. Eric C.. Endacott. Ryan Z.. Zhang. Hongxin. Liu. Yang. Chen. Shiyuan. Fitzpatrick. Michael R.. 2014-01-01. Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding. Nucleic Acids Research. 42. D1. D1245–D1252. 10.1093/nar/gkt905. 24136998. 3965117. 0305-1048.
- Samaras. Patroklos. Schmidt. Tobias. Frejno. Martin. Gessulat. Siegfried. Reinecke. Maria. Jarzab. Anna. Zecha. Jana. Mergner. Julia. Giansanti. Piero. Ehrlich. Hans-Christian. Aiche. Stephan. 2020-01-08. ProteomicsDB: a multi-omics and multi-organism resource for life science research. Nucleic Acids Research. en. 48. D1. D1153–D1163. 10.1093/nar/gkz974. 31665479. 7145565. 0305-1048.