In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function
f\colonV1 x … x Vn\toW,
where
V1,\ldots,Vn
n\inZ\ge0
W
i
vi
f(v1,\ldots,vi,\ldots,vn)
vi
22
A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, for any nonnegative integer
k
If all variables belong to the same space, one can consider symmetric, antisymmetric and alternating k-linear maps. The latter two coincide if the underlying ring (or field) has a characteristic different from two, else the former two coincide.
R
R3
F\colonRm\toRn
k
F
p
k
DkF\colonRm x … x Rm\toRn
Let
f\colonV1 x … x Vn\toW,
be a multilinear map between finite-dimensional vector spaces, where
Vi
di
W
d
\{bf{e}i1
,\ldots,bf{e} | |
idi |
\}
Vi
\{bf{b}1,\ldots,bf{b}d\}
W
k | |
A | |
j1 … jn |
f(bf{e} | |
1j1 |
,\ldots,bf{e} | |
njn |
)=
1bf{b} | |
A | |
1 |
+ … +
dbf{b} | |
A | |
d. |
Then the scalars
k | |
\{A | |
j1 … jn |
\mid1\leqji\leqdi,1\leqk\leqd\}
f
bf{v}i=
di | |
\sum | |
j=1 |
vijbf{e}ij
for
1\leqi\leqn
f(bf{v}1,\ldots,bf{v}n)=
d1 | |
\sum | |
j1=1 |
…
dn | |
\sum | |
jn=1 |
d | |
\sum | |
k=1 |
k | |
A | |
j1 … jn |
v | |
1j1 |
…
v | |
njn |
bf{b}k.
Let's take a trilinear function
g\colonR2 x R2 x R2\toR,
A basis for each is
\{bf{e}i1
,\ldots,bf{e} | |
idi |
\}=\{bf{e}1,bf{e}2\}=\{(1,0),(0,1)\}.
g(bf{e}1i,bf{e}2j,bf{e}3k)=f(bf{e}i,bf{e}j,bf{e}k)=Aijk,
i,j,k\in\{1,2\}
Ai
Vi
\{bf{e}1,bf{e}1,bf{e}1\},\{bf{e}1,bf{e}1,bf{e}2\},\{bf{e}1,bf{e}2,bf{e}1\}, \{bf{e}1,bf{e}2,bf{e}2\}, \{bf{e}2,bf{e}1,bf{e}1\},\{bf{e}2,bf{e}1,bf{e}2\},\{bf{e}2,bf{e}2,bf{e}1\}, \{bf{e}2,bf{e}2,bf{e}2\}.
Each vector
bf{v}i\inVi=R2
bf{v}i=
2 | |
\sum | |
j=1 |
vijbf{e}ij=vi1 x bf{e}1+vi2 x bf{e}2=vi1 x (1,0)+vi2 x (0,1).
The function value at an arbitrary collection of three vectors
bf{v}i\inR2
g(bf{v}1,bf{v}2,bf{v}3)=
2 | |
\sum | |
i=1 |
2 | |
\sum | |
j=1 |
2 | |
\sum | |
k=1 |
Aiv1iv2jv3k,
\begin{align} g((a,b),(c,d)&,(e,f))=ace x g(bf{e}1,bf{e}1,bf{e}1)+acf x g(bf{e}1,bf{e}1,bf{e}2)\\ &+ade x g(bf{e}1,bf{e}2,bf{e}1)+ adf x g(bf{e}1,bf{e}2,bf{e}2)+ bce x g(bf{e}2,bf{e}1,bf{e}1)+ bcf x g(bf{e}2,bf{e}1,bf{e}2)\ &+bde x g(bf{e}2,bf{e}2,bf{e}1)+ bdf x g(bf{e}2,bf{e}2,bf{e}2). \end{align}
There is a natural one-to-one correspondence between multilinear maps
f\colonV1 x … x Vn\toW,
and linear maps
F\colonV1 ⊗ … ⊗ Vn\toW,
where
V1 ⊗ … ⊗ Vn
V1,\ldots,Vn
f
F
f(v1,\ldots,vn)=F(v1 ⊗ … ⊗ vn).
One can consider multilinear functions, on an matrix over a commutative ring with identity, as a function of the rows (or equivalently the columns) of the matrix. Let be such a matrix and, be the rows of . Then the multilinear function can be written as
D(A)=D(a1,\ldots,an),
satisfying
D(a1,\ldots,cai+ai',\ldots,an)=cD(a1,\ldots,ai,\ldots,an)+D(a1,\ldots,ai',\ldots,an).
If we let
\hat{e}j
ai=
n | |
\sum | |
j=1 |
A(i,j)\hat{e}j.
Using the multilinearity of we rewrite as
D(A)=
n | |
D\left(\sum | |
j=1 |
A(1,j)\hat{e}j,a2,\ldots,an\right) =
n | |
\sum | |
j=1 |
A(1,j)D(\hat{e}j,a2,\ldots,an).
Continuing this substitution for each we get, for,
D(A)=
\sum | |
1\lek1\len |
\ldots
\sum | |
1\leki\len |
\ldots
\sum | |
1\lekn\len |
A(1,k1)A(2,k2)...A(n,kn)
D(\hat{e} | |
k1 |
,...,\hat{e} | |
kn |
).
Therefore, is uniquely determined by how operates on
\hat{e} | |
k1 |
,...,\hat{e} | |
kn |
In the case of 2×2 matrices, we get
D(A)=A1,1A1,2D(\hat{e}1,\hat{e}1)+A1,1A2,2D(\hat{e}1,\hat{e}2)+A1,2A2,1D(\hat{e}2,\hat{e}1)+A1,2A2,2D(\hat{e}2,\hat{e}2),
where
\hat{e}1=[1,0]
\hat{e}2=[0,1]
D
D(\hat{e}1,\hat{e}1)=D(\hat{e}2,\hat{e}2)=0
D(\hat{e}2,\hat{e}1)=-D(\hat{e}1,\hat{e}2)=-D(I)
D(I)=1
D(A)=A1,1A2,2-A1,2A2,1.