In mathematics, in the area of algebra studying the character theory of finite groups, an M-group or monomial group is a finite group whose complex irreducible characters are all monomial, that is, induced from characters of degree 1.
In this section only finite groups are considered. A monomial group is solvable.[1] Every supersolvable group and every solvable A-group is a monomial group. Factor groups of monomial groups are monomial, but subgroups need not be, since every finite solvable group can be embedded in a monomial group.[2]
S4
\operatorname{SL}2(F3)