Amount of substance explained

Amount of substance
Unit:mol
Dimension:wikidata

In chemistry, the amount of substance (symbol n) in a given sample of matter is defined as a ratio between the number of elementary entities (N) and the Avogadro constant (NA). The entities are usually molecules, atoms, or ions of a specified kind. The particular substance sampled may be specified using a subscript, e.g., the amount of sodium chloride (NaCl) would be denoted as nNaCl. The unit of amount of substance in the International System of Units is the mole (symbol: mol), a base unit.[1] Since 2019, the value of the Avogadro constant NA is defined to be exactly . Sometimes, the amount of substance is referred to as the chemical amount or, informally, as the "number of moles" in a given sample of matter.

Usage

Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope. As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number (exact for carbon-12 under the historical definition of the mole). For example, a molecule of water has a mass of about 18.015 daltons on average, whereas a mole of water (which contains water molecules) has a total mass of about 18.015 grams.

In chemistry, because of the law of multiple proportions, it is often much more convenient to work with amounts of substances (that is, number of moles or of molecules) than with masses (grams) or volumes (liters). For example, the chemical fact "1 molecule of oxygen will react with 2 molecules of hydrogen to make 2 molecules of water " can also be stated as "1 mole of will react with 2 moles of to form 2 moles of water". The same chemical fact, expressed in terms of masses, would be "32 g (1 mole) of oxygen will react with approximately 4.0304 g (2 moles of) hydrogen to make approximately 36.0304 g (2 moles) of water" (and the numbers would depend on the isotopic composition of the reagents). In terms of volume, the numbers would depend on the pressure and temperature of the reagents and products. For the same reasons, the concentrations of reagents and products in solution are often specified in moles per liter, rather than grams per liter.

The amount of substance is also a convenient concept in thermodynamics. For example, the pressure of a certain quantity of a noble gas in a recipient of a given volume, at a given temperature, is directly related to the number of molecules in the gas (through the ideal gas law), not to its mass.

This technical sense of the term "amount of substance" should not be confused with the general sense of "amount" in the English language. The latter may refer to other measurements such as mass or volume,[2] rather than the number of particles. There are proposals to replace "amount of substance" with more easily-distinguishable terms, such as enplethy[3] and stoichiometric amount.[2]

The IUPAC recommends that "amount of substance" should be used instead of "number of moles", just as the quantity mass should not be called "number of kilograms".

Nature of the particles

To avoid ambiguity, the nature of the particles should be specified in any measurement of the amount of substance: thus, a sample of 1 mol of molecules of oxygen has a mass of about 32 grams, whereas a sample of 1 mol of atoms of oxygen has a mass of about 16 grams.

Derived quantities

Molar quantities (per mole)

The quotient of some extensive physical quantity of a homogeneous sample by its amount of substance is an intensive property of the substance, usually named by the prefix "molar" or the suffix "per mole".

For example, the quotient of the mass of a sample by its amount of substance is its molar mass, for which the SI unit kilogram per mole or gram per mole may be used. This is about 18.015 g/mol for water, and 55.845 g/mol for iron. Similarly for volume, one gets the molar volume, which is about 18.069 millilitres per mole for liquid water and 7.092 mL/mol for iron at room temperature. From the heat capacity, one gets the molar heat capacity, which is about 75.385 J/(K⋅mol) for water and about 25.10 J/(K⋅mol) for iron.

Molar mass

The molar mass of a substance is the ratio of the mass of a sample of that substance to its amount of substance, Mm/n. The amount of substance is given as the number of moles in the sample. For most practical purposes, the numerical value of the molar mass expressed with the unit gram per mole is the same as that of the mean mass of one molecule of the substance expressed with the unit dalton, as the mole was historically defined such that the molar mass constant was exactly 1 g/mol. This allows for accurate determination of the amount in moles of a substance by measuring mass. Given the molecular mass in daltons, the same number in grams gives an amount very close to one mole of the substance. For example, the average molecular mass of water is about 18.015 Da and the molar mass of water is about 18.015 g/mol.[4] Other methods include the use of the molar volume or the measurement of electric charge.[4]

The number of moles of a substance in a sample is obtained by dividing the mass of the sample by the molar mass of the compound. For example, 100 g of water is about 5.551 mol of water.[4]

The molar mass of a substance depends not only on its molecular formula, but also on the distribution of isotopes of each chemical element present in it. For example, the molar mass of calcium-40 is, whereas the molar mass of calcium-42 is, and of calcium with the normal isotopic mix is .

Molar concentration

The molar concentration, also called molarity, of a solution of some substance is the number of moles per unit of volume of the final solution. In the SI its standard unit is mol/m3, although more practical units, such as mole per litre (mol/L) are used.

Molar fraction

The molar fraction or mole fraction of a substance in a mixture (such as a solution) is the number of moles of the compound in one sample of the mixture, divided by the total number of moles of all components. For example, if 20 g of is dissolved in 100 g of water, the amounts of the two substances in the solution will be (20 g)/(58.443 g/mol) = 0.34221 mol and (100 g)/(18.015 g/mol) = 5.5509 mol, respectively; and the molar fraction of will be .

In a mixture of gases, the partial pressure of each component is proportional to its molar ratio.

Amount concentration (moles per liter)

Another important derived quantity is the amount of substance concentration (also called amount concentration, or substance concentration in clinical chemistry;[5] which is defined as the amount of a specific substance in a sample of a solution (or some other mixture), divided by the volume of the sample.

The SI unit of this quantity is the mole (of the substance) per liter (of the solution). Thus, for example, the amount concentration of sodium chloride in ocean water is typically about 0.599 mol/L.

The denominator is the volume of the solution, not of the solvent. Thus, for example, one liter of standard vodka contains about 0.40 L of ethanol (315 g, 6.85 mol) and 0.60 L of water. The amount concentration of ethanol is therefore (6.85 mol of ethanol)/(1 L of vodka) = 6.85 mol/L, not (6.85 mol of ethanol)/(0.60 L of water), which would be 11.4 mol/L.

In chemistry, it is customary to read the unit "mol/L" as molar, and denote it by the symbol "M" (both following the numeric value). Thus, for example, each liter of a "0.5 molar" or "0.5 M" solution of urea in water contains 0.5 moles of that molecule. By extension, the amount concentration is also commonly called the molarity of the substance of interest in the solution. However, as of May 2007, these terms and symbols are not condoned by IUPAC.

This quantity should not be confused with the mass concentration, which is the mass of the substance of interest divided by the volume of the solution (about 35 g/L for sodium chloride in ocean water).

Amount fraction (moles per mole)

Confusingly, the amount concentration, or "molarity", should also be distinguished from "mole fraction", which should be the number of moles (molecules) of the substance of interest divided by the total number of moles (molecules) in the solution sample. This quantity is more properly called the amount fraction.

History

The alchemists, and especially the early metallurgists, probably had some notion of amount of substance, but there are no surviving records of any generalization of the idea beyond a set of recipes. In 1758, Mikhail Lomonosov questioned the idea that mass was the only measure of the quantity of matter,[6] but he did so only in relation to his theories on gravitation. The development of the concept of amount of substance was coincidental with, and vital to, the birth of modern chemistry.

The concept of atoms raised the question of their weight. While many were skeptical about the reality of atoms, chemists quickly found atomic weights to be an invaluable tool in expressing stoichiometric relationships.

The ideal gas law was the first to be discovered of many relationships between the number of atoms or molecules in a system and other physical properties of the system, apart from its mass. However, this was not sufficient to convince all scientists of the existence of atoms and molecules, many considered it simply being a useful tool for calculation.

See also

Notes and References

  1. p. 134
  2. 10.1021/acs.jchemed.5b00690. What's in a Name? Amount of Substance, Chemical Amount, and Stoichiometric Amount. Journal of Chemical Education. 93. 4. 583–86. 2016. Giunta. Carmen J.. 2016JChEd..93..583G. free.
  3. Web site: E.R. Cohen, T. Cvitas, J.G. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H.L. Strauss, M. Takami, and A.J. Thor, "Quantities, Units and Symbols in Physical Chemistry", IUPAC Green Book, 3rd Edition, 2nd Printing, IUPAC & RSC Publishing, Cambridge (2008). 2019-05-24. 4. https://web.archive.org/web/20161220125649/https://www.iupac.org/fileadmin/user_upload/publications/e-resources/ONLINE-IUPAC-GB3-2ndPrinting-Online-Sep2012.pdf. 2016-12-20. dead.
  4. [International Bureau of Weights and Measures]
  5. International Union of Pure and Applied Chemistry . 1996 . Glossary of Terms in Quantities and Units in Clinical Chemistry . . 68 . 957–1000 . 10.1351/pac199668040957. 95196393 . International Union of Pure and Applied Chemistry .
  6. Book: Lomonosov, Mikhail . Mikhail Lomonosov . 1970 . On the Relation of the Amount of Material and Weight . Henry M. . Leicester . Mikhail Vasil'evich Lomonosov on the Corpuscular Theory . //archive.org/stream/mikhailvasilevic017733mbp#page/n239/mode/2up . Cambridge, MA . Harvard University Press . 224–33 . Internet Archive.
  7. Atome . . . Paris . 1866 . 1 . 868–73. .
  8. Book: Lavoisier, Antoine . 1789 . Traité élémentaire de chimie, présenté dans un ordre nouveau et d'après les découvertes modernes . Paris . Chez Cuchet. .
  9. John . Dalton . John Dalton . On the Absorption of Gases by Water and Other Liquids . Memoirs of the Literary and Philosophical Society of Manchester . 2nd Series . 1 . 1805 . 271–87.
  10. Book: Dalton, John . John Dalton . A New System of Chemical Philosophy . Manchester . 1808. London .
  11. Joseph Louis . Gay-Lussac . Joseph Louis Gay-Lussac . Memoire sur la combinaison des substances gazeuses, les unes avec les autres . Mémoires de la Société d'Arcueil . 1809 . 2 . 207. English translation.
  12. Amedeo . Avogadro . Amedeo Avogadro . Essai d'une maniere de determiner les masses relatives des molecules elementaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons . Journal de Physique . 1811 . 73 . 58–76. English translation.
  13. Excerpts from Berzelius' essay: Part II; Part III.
  14. Berzelius' first atomic weight measurements were published in Swedish in 1810: Hisinger . W. . Berzelius, J.J. . Jöns Jakob Berzelius . Forsok rorande de bestamda proportioner, havari den oorganiska naturens bestandsdelar finnas forenada . Afh. Fys., Kemi Mineral. . 3 . 162 . 1810.
  15. William . Prout . William Prout . 1815 . On the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms . . 6 . 321–30.
  16. Petit . Alexis Thérèse . Alexis Thérèse Petit . Dulong, Pierre-Louis . Pierre Louis Dulong . Recherches sur quelques points importants de la Théorie de la Chaleur . . 10 . 395–413 . 1819. English translation
  17. Clapeyron . Émile . Benoît Paul Émile Clapeyron . 1834 . Puissance motrice de la chaleur . Journal de l'École Royale Polytechnique . 23 . 14 . 153–90.
  18. Michael . Faraday . Michael Faraday . 1834 . On Electrical Decomposition . Philosophical Transactions of the Royal Society . 10.1098/rstl.1834.0008 . 124 . 77–122. 116224057 .
  19. Krönig . August . August Krönig . Grundzüge einer Theorie der Gase . Annalen der Physik . 99 . 315–22 . 1856 . 10.1002/andp.18561751008 . 1856AnP...175..315K . 10.
  20. Clausius . Rudolf . Rudolf Clausius . Ueber die Art der Bewegung, welche wir Wärme nennen . Annalen der Physik . 176 . 353–79 . 1857 . 10.1002/andp.18571760302 . 1857AnP...176..353C . 3.
  21. [Charles-Adolphe Wurtz|Wurtz's]
  22. J. . Loschmidt . Johann Josef Loschmidt . Zur Grösse der Luftmoleküle . Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien . 52 . 2 . 395–413 . 1865. English translation .
  23. none. Svante . Arrhenius . Svante Arrhenius . Zeitschrift für Physikalische Chemie . 1 . 631 . 1887. English translation .
  24. Book: Ostwald, Wilhelm . Wilhelm Ostwald . 1893 . Hand- und Hilfsbuch zur ausführung physiko-chemischer Messungen . W. Engelmann . Leipzig.
  25. Book: Helm, Georg . The Principles of Mathematical Chemistry: The Energetics of Chemical Phenomena . (Transl. Livingston, J.; Morgan, R.) . New York . Wiley . 1897 . 6.
  26. Einstein . Albert . Albert Einstein . Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen . Annalen der Physik . 17 . 549–60. 1905 . 10.1002/andp.19053220806 . 1905AnP...322..549E . 8. free .
  27. Jean . Perrin . Jean Baptiste Perrin . Mouvement brownien et réalité moléculaire . . 8 Série . 18 . 1–114 . 1909. Extract in English, translation by Frederick Soddy.
  28. Soddy . Frederick . Frederick Soddy . The Radio-elements and the Periodic Law . Chemical News . 107 . 97–99 . 1913.
  29. Thomson . J.J. . J. J. Thomson . Rays of positive electricity . Proceedings of the Royal Society A . 89 . 1–20 . 1913 . 10.1098/rspa.1913.0057 . 1913RSPSA..89....1T . 607. free .
  30. Söderbaum, H.G. (November 11, 1915). Statement regarding the 1914 Nobel Prize in Chemistry.
  31. Aston . Francis W. . Francis William Aston . 1920 . The constitution of atmospheric neon . Philosophical Magazine . 39 . 6 . 449–55 . 10.1080/14786440408636058.
  32. Söderbaum, H.G. (December 10, 1921). Presentation Speech for the 1921 Nobel Prize in Chemistry.
  33. Söderbaum, H.G. (December 10, 1922). Presentation Speech for the 1922 Nobel Prize in Chemistry.
  34. [Carl Wilhelm Oseen|Oseen, C.W.]
  35. Holden . Norman E. . Atomic Weights and the International Committee – A Historical Review . Chemistry International . 2004 . 1 . 26 . 4–7.