Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It may be defined in terms of the eccentricity, e, or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis):
\alpha=\sin-1e=\cos-1\left(
b | |
a |
\right).
Any non-dimensional parameter of the ellipse may be expressed in terms of the angular eccentricity. Such expressions are listed in the following table after the conventional definitions.[2] in terms of the semi-axes. The notation for these parameters varies. Here we follow Rapp:
(first) eccentricity | e |
| \sin\alpha | |||||||||||||||||||||||||
second eccentricity | e' |
| \tan\alpha | |||||||||||||||||||||||||
third eccentricity | e'' |
|
| |||||||||||||||||||||||||
f |
| 1-\cos\alpha |
\right) | |||||||||||||||||||||||||
second flattening | f' |
| \sec\alpha-1 |
| ||||||||||||||||||||||||
third flattening | n |
|
| =
\right) |
. Charles Haynes Haswell . Mechanics' and Engineers' Pocket-book of Tables, Rules, and Formulas . Harper & Brothers . 1920 . 2007-04-09.