In linear algebra, the modal matrix is used in the diagonalization process involving eigenvalues and eigenvectors.
Specifically the modal matrix
M
A
A
M
D=M-1AM,
where
D
A
D
D
A
M
The matrix
A=\begin{pmatrix}3&2&0\\ 2&0&0\\ 1&0&2 \end{pmatrix}
has eigenvalues and corresponding eigenvectors
λ1=-1, b1=\left(-3,6,1\right),
λ2=2, b2=\left(0,0,1\right),
λ3=4, b3=\left(2,1,1\right).
A diagonal matrix
D
A
D=\begin{pmatrix}-1&0&0\\ 0&2&0\\ 0&0&4 \end{pmatrix}.
M
D=M-1AM,
M=\begin{pmatrix}-3&0&2\\ 6&0&1\\ 1&1&1 \end{pmatrix}.
Note that since eigenvectors themselves are not unique, and since the columns of both
M
D
M
D
Let
A
M
A
A
M
M
M
M
One can show that
where
J
M-1
Note that when computing these matrices, equation is the easiest of the two equations to verify, since it does not require inverting a matrix.
This example illustrates a generalized modal matrix with four Jordan chains. Unfortunately, it is a little difficult to construct an interesting example of low order.The matrix
A=\begin{pmatrix}-1&0&-1&1&1&3&0\\ 0&1&0&0&0&0&0\\ 2&1&2&-1&-1&-6&0\\ -2&0&-1&2&1&3&0\\ 0&0&0&0&1&0&0\\ 0&0&0&0&0&1&0\\ -1&-1&0&1&2&4&1 \end{pmatrix}
has a single eigenvalue
λ1=1
\mu1=7
A
\left\{x3,x2,x1\right\}
\left\{y2,y1\right\}
\left\{z1\right\}
\left\{w1\right\}
An "almost diagonal" matrix
J
A
M= \begin{pmatrix}z1&w1&x1&x2&x3&y1&y2\end{pmatrix}= \begin{pmatrix} 0&1&-1&0&0&-2&1\\ 0&3&0&0&1&0&0\\ -1&1&1&1&0&2&0\\ -2&0&-1&0&0&-2&0\\ 1&0&0&0&0&0&0\\ 0&1&0&0&0&0&0\\ 0&0&0&-1&0&-1&0 \end{pmatrix},
J=\begin{pmatrix} 1&0&0&0&0&0&0\\ 0&1&0&0&0&0&0\\ 0&0&1&1&0&0&0\\ 0&0&0&1&1&0&0\\ 0&0&0&0&1&0&0\\ 0&0&0&0&0&1&1\\ 0&0&0&0&0&0&1 \end{pmatrix},
where
M
A
M
A
AM=MJ
M
J
M
J