Mixed-anion compounds explained

Mixed-anion compounds, heteroanionic materials or mixed-anion materials are chemical compounds containing cations and more than one kind of anion. The compounds contain a single phase, rather than just a mixture.[1]

Use in materials science

By having more than one anion, many more compounds can be made, and properties tuned to desirable values.[2] In terms of optics, properties include phosphorescence, photocatalysis,[3] laser damage threshold, refractive index, birefringence, absorption particularly in the ultraviolet or near infrared, non-linearity.[4] Mechanical properties can include ability to grow a large crystal, ability to form a thin layer, strength, or brittleness.

Thermal properties can include melting point, thermal stability, phase transition temperatures, thermal expansion coefficient.

For electrical properties, electric conductivity, band gap, superconducting transition temperature piezoelectricity, pyroelectricity, ferromagnetism, dielectric constant, charge-density wave transition can be adjusted.

Production

Many of the non-metals that could make mixed-anion compounds may have greatly varying volatilities. This makes it more difficult to combine the elements together. Compounds may be produced in a solid state reaction, by heating solids together, either in a vacuum or a gas. Common gases used include, oxygen, hydrogen, ammonia, chlorine, fluorine, hydrogen sulfide, or carbon disulfide. Soft chemical approaches to manufacture include solvothermal synthesis, or substituting atoms in a structure by others, including by water, oxygen, fluorine, or nitrogen. Teflon pouches can be used to separate different formulations. Thin film deposits can yield strained layers. High pressures can be used to prevent evaporation of volatiles. High pressure can result in different crystal forms, perhaps with higher coordination number.[5]

Kinds

Elemental

H
BBHB
CCHCBC
NNHNBNCN
OOHOBOCONO
FFHFBFCFNFOF
SiSiHSiBSiCSiNSiOSiFSi
PPHPBPCPNPOPFPSiP
SSHSBSCSNSOSFSSiSPS
ClClHClBClCClNClOClFClSiClPClSCl
GeGeHGeBGeCGeNGeOGeFGeSiGePGeSGeClGe
AsAsHAsBAsCAsNAsOAsFAsSiAsPAsSAsClAsGeAs
SeSeHSeBSeCSeNSeOSeFSeSiSePSeSSeClSeGeSeAsSe
BrBrHBrBBrCBrNBrOBrFBrSiBrPBrSBrClBrGeBrAsBrSeBr
SbSbHSbBSbCSbNSbOSbFSbSiSbPSbSSbClSbGeSbAsSbSeSbBrSb
TeTeHTeBTeCTeNTeOTeFTeSiTePTeSTeClTeGeTeAsTeSeTeBrTeSbTe
IIHIBICINIOIFISiIPISIClIGeIAsISeIBrISbITeI
BiBiHBiBBiCBiNBiOBiFBiSiBiPBiSBiClBiGeBiAsBiSeBiBrBiSbBiTeBiI

Molecular anions

Oxyanions

Mixed valency and oligomers

Some elements can form several kinds of anions, and compounds may exist with more than one. Examples include the iodate periodates,[10] sulfite sulfates, selenate selenites, tellurite tellurates, nitrate nitrites, phosphate phosphites, and arsenate arsenites.

These kinds also include different oligomeric forms such as phosphates or fluorotitanates, such as [Ti<sub>4</sub>F<sub>20</sub>]4- and [TiF<sub>5</sub>].[11]

Organic

Notes and References

  1. Book: Mixed Anion Compounds . 978-1839165122 . Kageyama . Hiroshi . Ogino . Hiraku . Hasegawa . Tetsuya . 26 June 2023 . Royal Society of Chemistry .
  2. Takeiri . Fumitaka . Kageyama . Hiroshi . Mixed-Anion Compounds: A New Trend in Solid State Chemistry . Nihon Kessho Gakkaishi . 15 December 2018 . 60 . 5–6 . 240–245 . 10.5940/jcrsj.60.240. free . 2018NKG....60..240T .
  3. Maeda . Kazuhiko . Takeiri . Fumitaka . Kobayashi . Genki . Matsuishi . Satoru . Ogino . Hiraku . Ida . Shintaro . Mori . Takao . Uchimoto . Yoshiharu . Tanabe . Setsuhisa . Hasegawa . Tetsuya . Imanaka . Nobuhito . Kageyama . Hiroshi . Recent Progress on Mixed-Anion Materials for Energy Applications . Bulletin of the Chemical Society of Japan . 15 January 2022 . 95 . 1 . 26–37 . 10.1246/bcsj.20210351. 244141502 . free .
  4. Li . Yan-Yan . Wang . Wen-Jing . Wang . Hui . Lin . Hua . Wu . Li-Ming . Mixed-Anion Inorganic Compounds: A Favorable Candidate for Infrared Nonlinear Optical Materials . Crystal Growth & Design . 7 June 2019 . 19 . 7 . 4172–4192 . 10.1021/acs.cgd.9b00358 . 197213596.
  5. Kageyama . Hiroshi . Hayashi . Katsuro . Maeda . Kazuhiko . Attfield . J. Paul . Hiroi . Zenji . Rondinelli . James M. . Poeppelmeier . Kenneth R. . Kenneth Poeppelmeier . Expanding frontiers in materials chemistry and physics with multiple anions . Nature Communications . 22 February 2018 . 9 . 1 . 772 . 10.1038/s41467-018-02838-4 . 29472526 . 5823932 . 2018NatCo...9..772K . free.
  6. Saparov . Bayrammurad . Singh . David J. . Garlea . Vasile O. . Sefat . Athena S. . Crystal, magnetic and electronic structures and properties of new BaMnPnF (Pn = As, Sb, Bi) . Scientific Reports . 8 July 2013 . 3 . 1 . 2154 . 10.1038/srep02154 . 23831607 . 6504822 . 1306.5182 . 2013NatSR...3E2154S.
  7. Ravnsbaek . Dorthe B. . Sørensen . Lise H. . Filinchuk . Yaroslav . Reed . Daniel . Book . David . Jakobsen . Hans J. . Besenbacher . Flemming . Skibsted . Jørgen . Jensen . Torben R. . Mixed-Anion and Mixed-Cation Borohydride KZn(BH4)Cl2: Synthesis, Structure and Thermal Decomposition . European Journal of Inorganic Chemistry . April 2010 . 2010 . 11 . 1608–1612 . 10.1002/ejic.201000119 .
  8. Almoussawi . Batoul . Huvé . Marielle . Dupray . Valérie . Clevers . Simon . Duffort . Victor . Mentré . Olivier . Roussel . Pascal . Arevalo-Lopez . Angel M. . Kabbour . Houria . Oxysulfide Ba5(VO2S2)2(S2)2 Combining Disulfide Channels and Mixed-Anion Tetrahedra and Its Third-Harmonic-Generation Properties . Inorganic Chemistry . 22 April 2020 . 59 . 9 . 5907–5917 . 10.1021/acs.inorgchem.9b03674 . 32319754 . 216073355 .
  9. Xiao . Jin-Rong . Yang . Si-Han . Feng . Fang . Xue . Huai-Guo . Guo . Sheng-Ping . A review of the structural chemistry and physical properties of metal chalcogenide halides . Coordination Chemistry Reviews . September 2017 . 347 . 23–47 . 10.1016/j.ccr.2017.06.010. free .
  10. Sun . Jun . Abudouwufu . Tushagu . Jin . Congcong . Guo . Zhiyong . Zhang . Min . K 6 (IO 6 H 4)(HI 2 O 6)(HIO 3) 2 (IO 3) 4 ·2H 2 O: A Case of Iodate with Coexisting [I 5+ O 3] and [I 7+ O 6] Units . Inorganic Chemistry . 17 December 2021 . 61 . 1 . 688–692 . 10.1021/acs.inorgchem.1c03436 . 34919392 . 245278633.
  11. Shlyapnikov . Igor M. . Goreshnik . Evgeny A. . Mazej . Zoran . Guanidinium Perfluoridotitanate(IV) Compounds: Structural Determination of an Oligomeric [Ti6F27]3– Anion, and an Example of a Mixed-Anion Salt Containing Two Different Fluoridotitanate(IV) Anions . European Journal of Inorganic Chemistry . 31 December 2018 . 2018 . 48 . 5246–5257 . 10.1002/ejic.201801207 . 104344701.