The Minimal Residual Method or MINRES is a Krylov subspace method for the iterative solution of symmetric linear equation systems. It was proposed by mathematicians Christopher Conway Paige and Michael Alan Saunders in 1975.[1]
In contrast to the popular CG method, the MINRES method does not assume that the matrix is positive definite, only the symmetry of the matrix is mandatory.
The GMRES method is essentially a generalization of MINRES for arbitrary matrices. Both minimize the 2-norm of the residual and do the same calculations in exact arithmetic when the matrix is symmetric. MINRES is a short-recurrence method with a constant memory requirement, whereas GMRES requires storing the whole Krylov space, so its memory requirement is roughly proportional to the number of iterations. On the other hand, GMRES tends to suffer less from loss of orthogonality.[1] [2]
The MINRES method iteratively calculates an approximate solution of a linear system of equations of the formwhere
A\inRn x
b\inRn
For this, the norm of the residual
r(x):=b-Ax
k
n | |
x | |
0\inR |
r0:=r(x0)
More precisely, we define the approximate solutions
xk
\| ⋅ \|
Rn
Because of the symmetry of
A
Note: The MINRES method is more complicated than the algebraically equivalent Conjugate Residual method. The Conjugate Residual (CR) method was therefore produced below as a substitute. It differs from MINRES in that in MINRES, the columns of a basis of the Krylov space (denoted below by
pk
sk
First you choose
n | |
x | |
0\inR |
Then we iterate for
k=1,2,...
In the case of positive definite matrices, the convergence rate of the MINRES method can be estimated in a way similar to that of the CG method.[3] In contrast to the CG method, however, the estimation does not apply to the errors of the iterates, but to the residual. The following applies:
where
\kappa(A)
A
A
λmax(A)
λmin(A)
A