Minimal residual method explained

The Minimal Residual Method or MINRES is a Krylov subspace method for the iterative solution of symmetric linear equation systems. It was proposed by mathematicians Christopher Conway Paige and Michael Alan Saunders in 1975.[1]

In contrast to the popular CG method, the MINRES method does not assume that the matrix is positive definite, only the symmetry of the matrix is mandatory.

GMRES vs. MINRES

The GMRES method is essentially a generalization of MINRES for arbitrary matrices. Both minimize the 2-norm of the residual and do the same calculations in exact arithmetic when the matrix is symmetric. MINRES is a short-recurrence method with a constant memory requirement, whereas GMRES requires storing the whole Krylov space, so its memory requirement is roughly proportional to the number of iterations. On the other hand, GMRES tends to suffer less from loss of orthogonality.[1] [2]

Properties of the MINRES method

The MINRES method iteratively calculates an approximate solution of a linear system of equations of the formAx = b,where

A\inRn x

is a symmetric matrix and

b\inRn

a vector.

For this, the norm of the residual

r(x):=b-Ax

in a

k

-dimensional Krylov subspaceV_k = x_0 + \operatorname\is minimized. Here
n
x
0\inR
is an initial value (often zero) and

r0:=r(x0)

.

More precisely, we define the approximate solutions

xk

throughx_k := \mathrm_ \|r(x)\|,where

\|\|

is the standard Euclidean norm on

Rn

.

Because of the symmetry of

A

, unlike in the GMRES method, it is possible to carry out this minimization process recursively, storing only two previous steps (short recurrence). This saves memory.

MINRES algorithm

Note: The MINRES method is more complicated than the algebraically equivalent Conjugate Residual method. The Conjugate Residual (CR) method was therefore produced below as a substitute. It differs from MINRES in that in MINRES, the columns of a basis of the Krylov space (denoted below by

pk

) can be orthogonalized, whereas in CR their images (below labeled with

sk

) can be orthogonalized via the Lanczos recursion. There are more efficient and preconditioned variants with fewer AXPYs. Compare with the article.

First you choose

n
x
0\inR
arbitrary and compute\beginr_0 &= b - A x_0 \\p_0 &= r_0 \\s_0 &= A p_0\end

Then we iterate for

k=1,2,...

in the following steps:

Convergence rate of the MINRES method

In the case of positive definite matrices, the convergence rate of the MINRES method can be estimated in a way similar to that of the CG method.[3] In contrast to the CG method, however, the estimation does not apply to the errors of the iterates, but to the residual. The following applies:

\|r_k\| \le 2\left(\frac\right)^k\|r_\|,

where

\kappa(A)

is the condition number of matrix

A

. Because

A

is normal, we have\kappa(A) = \frac,where

λmax(A)

and

λmin(A)

are maximal and minimal eigenvalues of

A

, respectively.

Implementation in GNU Octave / MATLAB

function [x, r] = minres(A, b, x0, maxit, tol) x = x0; r = b - A * x0; p0 = r; s0 = A * p0; p1 = p0; s1 = s0; for iter = 1:maxit p2 = p1; p1 = p0; s2 = s1; s1 = s0; alpha = r'*s1 / (s1'*s1); x = x + alpha * p1; r = r - alpha * s1; if (r'*r < tol^2) break end p0 = s1; s0 = A * s1; beta1 = s0'*s1 / (s1'*s1); p0 = p0 - beta1 * p1; s0 = s0 - beta1 * s1; if iter > 1 beta2 = s0'*s2 / (s2'*s2); p0 = p0 - beta2 * p2; s0 = s0 - beta2 * s2; end endend

References

  1. Solution of sparse indefinite systems of linear equations . Christopher C. Paige, Michael A. Saunders . 1975 . SIAM Journal on Numerical Analysis . 12 . 4. 617–629 . 10.1137/0712047 .
  2. Web site: M. Naoufal . Nifa . Effcient solvers for constrained optimization in parameter identification problems. Doctoral Thesis. 51–52.
  3. Book: Numerical Methods for Two-phase Incompressible Flows . Springer . Sven Gross, Arnold Reusken . section 5.2 . 978-3-642-19685-0.

External links