In number theory, the real parts of the roots of unity are related to one-another by means of the minimal polynomial of
2\cos(2\pi/n).
\cos\left(2k\pi/n\right)
k
n.
n\geq1
\Psin(x)
2\cos(2\pi/n)
\Psin\left(2\cos(2\pi/n)\right)=0
For every, the polynomial
\Psin(x)
2\cos\left(2k\pi/n\right)
k
n
1\lek<n
k=n=1.
k
n
\varphi(n);
\Psin(x)
1
n=1,2
\varphi(n)/2
n\geq3.
The first two polynomials are
\Psi1(x)=x-2
\Psi2(x)=x+2.
The polynomials
\Psin(x)
The first few polynomials
\Psin(x)
\begin{align} \Psi1(x)&=x-2\\ \Psi2(x)&=x+2\\ \Psi3(x)&=x+1\\ \Psi4(x)&=x\\ \Psi5(x)&=x2+x-1\\ \Psi6(x)&=x-1\\ \Psi7(x)&=x3+x2-2x-1\\ \Psi8(x)&=x2-2\\ \Psi9(x)&=x3-3x+1\\ \Psi10(x)&=x2-x-1\\ \Psi11(x)&=x5+x4-4x3-3x2+3x+1\\ \Psi12(x)&=x2-3\\ \Psi13(x)&=x6+x5-5x4-4x3+6x2+3x-1\\ \Psi14(x)&=x3-x2-2x+1\\ \Psi15(x)&=x4-x3-4x2+4x+1\\ \Psi16(x)&=x4-4x2+2\\ \Psi17(x)&=x8+x7-7x6-6x5+15x4+10x3-10x2-4x+1\\ \Psi18(x)&=x3-3x-1\\ \Psi19(x)&=x9+x8-8x7-7x6+21x5+15x4-20x3-10x2+5x+1\\ \Psi20(x)&=x4-5x2+5 \end{align}
If
n
\Psin(x)
Putting
n=2m+1
\begin{align} \chin(x):&=\binom{m}{0}xm+\binom{m-1}{0}xm-1-\binom{m-1}{1}xm-2-\binom{m-2}{1}xm-3+\binom{m-2}{2}xm-4+\binom{m-3}{2}xm-5--++ … \\ &=
m | |
\sum | |
k=0 |
(-1)\lfloor\binom{m-\lfloor(k+1)/2\rfloor}{\lfloork/2\rfloor}xm-k\\ &=\binom{m}{m}xm+\binom{m-1}{m-1}xm-1-\binom{m-1}{m-2}xm-2-\binom{m-2}{m-3}xm-3+\binom{m-2}{m-4}xm-4+\binom{m-3}{m-5}xm-5--++ … \\ &=
m | |
\sum | |
k=0 |
(-1)\lfloor\binom{\lfloor(m+k)/2\rfloor}{k}xk, \end{align}
\Psip(x)=\chip(x)
p
If
n
\chin(x)
\Phid(x)
\prodd\mid\Phid(x)=xn-1
\Psid(x)
d>1
n
n
\prodd\mid\Psid(x)=\chin(x).
\Psid(x)
\chin(x)
\Psid(x)
d
1 | |
2 |
\varphi(d)
\begin{align} \chi15(x)&=x7+x6-6x5-5x4+10x3+6x2-4x-1\\ &=(x+1)(x2+x-1)(x4-x3-4x2+4x+1)\\ &=\Psi3(x) ⋅ \Psi5(x) ⋅ \Psi15(x). \end{align}
From the below formula in terms of Chebyshev polynomials and the product formula for odd
n
n
\prodd\mid\Psid(x)=(\chin+1(x)+\chin-1(x)).
Independently of this, if
n=2k
k\ge2
\Psi | |
2k+1 |
(
x)=(\Psi | |
2k |
(x))2-2
\Psi4(x)=x
The roots of
\Psin(x)
2\cos\left( | 2\pik |
n |
\right)
1\leqk<
n | |
2 |
\gcd(k,n)=1
\Psin(x)
\Psin(x)=\displaystyle\prod\begin{array{c}1\leqk<
n | |
2 |
\ \gcd(k,n)=1\end{array}}\left(x-2\cos\left(
2\pik | |
n |
\right)\right).
\cos(x)
2\cos\left( | 2\pik |
n |
\right)
n
k
For a positive integer
n
\zetan=\exp\left(
2\pii | |
n |
\right)=\cos\left(
2\pi | |
n |
\right)+\sin\left(
2\pi | |
n |
\right)i
n
\zetan
n
\Phin(x)
-1 | |
\zeta | |
n |
=\cos\left(
2\pi | |
n |
\right)-\sin\left(
2\pi | |
n |
\right)i
2\cos\left( | 2\pi |
n |
\right)
\zetan
2\cos\left( | 2\pi |
n |
\right)=\zetan+
-1 | |
\zeta | |
n |
z
\Psin\left(z+z-1\right)=
| ||||
z |
\Phin(z)
In 1993, Watkins and Zeitlin established the following relation between
\Psin(x)
If
n=2s+1
\prodd\Psid(2x)=2(Ts(x)-Ts(x)),
and if
n=2s
\prodd\Psid(2x)=2(Ts(x)-Ts(x)).
If
n
2
\Psi | |
2k+1 |
(2x)=
2T | |
2k-1 |
(x).
The absolute value of the constant coefficient of
\Psin(x)
|\Psin(0)|=\begin{cases}0&if n=4,\\2&if n=2k,k\geq0,k ≠ 2,\ p&if n=4pk,k\geq1,p>2 prime,\\1&otherwise.\end{cases}
Kn=Q\left(\zetan+
-1 | |
\zeta | |
n |
\right)
Q(\zetan)
lO | |
Kn |
Kn
lO | |
Kn |
=Z\left[\zetan+
-1 | |
\zeta | |
n |
\right]
\left\{1,\zetan+
-1 | |
\zeta | |
n |
,\ldots,\left(\zetan+
-1 | |
\zeta | |
n |
| |||||
\right) |
\right\}
lO | |
Kn |
Kn
\Psin(x)
D | |
Kn |
=
(m-1)2m-1 | |
\begin{cases}2 |
&if n=2m,m>
(mpm-(m+1)pm-1)/2 | |
2,\\p |
&if n=pm or 2pm,p>
\omega(n) | |
2 prime,\ \left(\prod | |
i=1 |
ei-1/(pi-1) | |
p | |
i |
| ||||
\right) |
&if \omega(n)>1,k ≠ 2pm.\end{cases}
\cos(2\pi/n)
\cos\left( | 2\pi |
n |
\right)
Q