In theoretical physics, a minimal model or Virasoro minimal model is a two-dimensional conformal field theory whose spectrum is built from finitely many irreducible representations of the Virasoro algebra.Minimal models have been classified and solved, and found to obey an ADE classification.[1] The term minimal model can also refer to a rational CFT based on an algebra that is larger than the Virasoro algebra, such as a W-algebra.
In minimal models, the central charge of the Virasoro algebra takes values of the type
cp,q=1-6{(p-q)2\overpq} .
p,q
p,q\geq2
hr,s=
(pr-qs)2-(p-q)2 | |
4pq |
, with r,s\inN* ,
hr,s=hq-r,p-s=hr+q,s+p .
hr,s
1\leqr\leqq-1 , 1\leqs\leqp-1 .
l{R}r,s
|p-q|=1
12(p-1)(q-1) | |
(p,q)
(q-1) x (p-1)
l{R}r,s=l{R}q-r,p-s .
The fusion rules of the multiply degenerate representations
l{R}r,s
l{R} | |
r1,s1 |
x
l{R} | |
r2,s2 |
=
\sum | |
r3\overset{2 |
{=}|r1-r
min(r1+r2,2q-r1-r2)-1 | |
2|+1} |
\sum | |
s3\overset{2 |
{=}|s1-s
min(s1+s2,2p-s1-s2)-1 | |
2|+1} |
l{R} | |
r3,s3 |
,
For any coprime integers
p,q
p,q\geq2
A-series | |
l{S} | |
p,q |
=
12 | |
oplus |
q-1 | |
r=1 |
p-1 | |
oplus | |
s=1 |
l{R}r,s ⊗ \bar{l{R}}r,s .
(p,q)
(q,p)
The OPE of two fields involves all the fields that are allowed by the fusion rules of the corresponding representations.
A D-series minimal model with the central charge
cp,q
p
q
6
p\leftrightarrowq
q
p
D-series | |
l{S} | |
p,q |
\underset{q\equiv0\operatorname{mod}4, q\geq8}{=}
12 | |
oplus |
r\overset{2{=}1}q-1
p-1 | |
oplus | |
s=1 |
l{R} ⊗ \bar{l{R}}r,s ⊕
12oplus | |
r\overset{2 |
{=}2}q-2
p-1 | |
oplus | |
s=1 |
l{R}r,s ⊗ \bar{l{R}}q-r,s ,
D-series | |
l{S} | |
p,q |
\underset{q\equiv2\operatorname{mod}4, q\geq6}{=}
12 | |
oplus |
r\overset{2{=}1}q-1
p-1 | |
oplus | |
s=1 |
l{R} ⊗ \bar{l{R}}r,s ⊕
12oplus | |
r\overset{2 |
{=}1}q-1
p-1 | |
oplus | |
s=1 |
l{R}r,s ⊗ \bar{l{R}}q-r,s ,
r
l{R} | |||||
|
⊗
\bar{l{R}} | |||||
|
q\equiv2 mod 4
The OPE of two fields involves all the fields that are allowed by the fusion rules of the corresponding representations, and that respect the conservation of diagonality: the OPE of one diagonal and one non-diagonal field yields only non-diagonal fields, and the OPE of two fields of the same type yields only diagonal fields. [2] For this rule, one copy of the representation
l{R} | |||||
|
⊗
\bar{l{R}} | |||||
|
There are three series of E-series minimal models. Each series exists for a given value of
q\in\{12,18,30\},
p\geq2
q
p\geq5
|l{R}|2=l{R} ⊗ \bar{l{R}}
E-series | |
l{S} | |
p,12 |
=
12 | |
oplus |
p-1 | |
s=1 |
\left\{\left|l{R}1,s ⊕ l{R}7,s\right|2 ⊕ \left|l{R}4,s ⊕ l{R}8,s\right|2 ⊕ \left|l{R}5,s ⊕ l{R}11,s\right|2\right\} ,
E-series | |
l{S} | |
p,18 |
=
12 | |
oplus |
p-1 | |
s=1 |
\left\{\left|l{R}9,s ⊕ 2l{R}3,s\right|2\ominus4\left|l{R}3,s\right|2 ⊕ oplusr\in\{1,
E-series | |
l{S} | |
p,30 |
=
12 | |
oplus |
p-1 | |
s=1 |
\left\{\left|oplusr\in\{1,11,19,29\
The following A-series minimal models are related to well-known physical systems:[3]
(p,q)=(3,2)
(p,q)=(5,2)
(p,q)=(4,3)
(p,q)=(5,4)
(p,q)=(6,5)
(p,q)=(6,5)
(p,q)=(7,6)
2\leqq\leq6
\begin{array}{c}\begin{array}{c|cc}1&0&0\ \hline&1&2\end{array}\ c3,2=0\end{array} \begin{array}{c}\begin{array}{c|cccc}1&0&-
1 | |
5 |
&-
1 | |
5 |
&0\ \hline&1&2&3&4\end{array}\ c5,2=-
22 | |
5 |
\end{array}
\begin{array}{c}\begin{array}{c|ccc}2&
1 | |
2 |
&
1 | |
16 |
&0\ 1&0&
1 | |
16 |
&
1 | |
2 |
\ \hline&1&2&3\end{array}\ c4,3=
1 | |
2 |
\end{array} \begin{array}{c}\begin{array}{c|cccc}2&
3 | |
4 |
&
1 | |
5 |
&-
1 | |
20 |
&0\ 1&0&-
1 | |
20 |
&
1 | |
5 |
&
3 | |
4 |
\ \hline&1&2&3&4\end{array}\ c5,3=-
3 | |
5 |
\end{array}
\begin{array}{c}\begin{array}{c|cccc}3&
3 | |
2 |
&
3 | |
5 |
&
1 | |
10 |
&0\ 2&
7 | |
16 |
&
3 | |
80 |
&
3 | |
80 |
&
7 | |
16 |
\ 1&0&
1 | |
10 |
&
3 | |
5 |
&
3 | |
2 |
\ \hline&1&2&3&4\end{array}\ c5,4=
7 | |
10 |
\end{array} \begin{array}{c}\begin{array}{c|cccccc}3&
5 | |
2 |
&
10 | |
7 |
&
9 | |
14 |
&
1 | |
7 |
&-
1 | |
14 |
&0\ 2&
13 | |
16 |
&
27 | |
112 |
&-
5 | |
112 |
&-
5 | |
112 |
&
27 | |
112 |
&
13 | |
16 |
\ 1&0&-
1 | |
14 |
&
1 | |
7 |
&
9 | |
14 |
&
10 | |
7 |
&
5 | |
2 |
\ \hline&1&2&3&4&5&6\end{array}\ c7,4=-
13 | |
14 |
\end{array}
\begin{array}{c}\begin{array}{c|ccccc}4&3&
13 | |
8 |
&
2 | |
3 |
&
1 | |
8 |
&0\ 3&
7 | |
5 |
&
21 | |
40 |
&
1 | |
15 |
&
1 | |
40 |
&
2 | |
5 |
\ 2&
2 | |
5 |
&
1 | |
40 |
&
1 | |
15 |
&
21 | |
40 |
&
7 | |
5 |
\ 1&0&
1 | |
8 |
&
2 | |
3 |
&
13 | |
8 |
&3\ \hline&1&2&3&4&5\end{array}\ c6,5=
4 | |
5 |
\end{array} \begin{array}{c}\begin{array}{c|cccccc}4&
15 | |
4 |
&
16 | |
7 |
&
33 | |
28 |
&
3 | |
7 |
&
1 | |
28 |
&0\ 3&
9 | |
5 |
&
117 | |
140 |
&
8 | |
35 |
&-
3 | |
140 |
&
3 | |
35 |
&
11 | |
20 |
\ 2&
11 | |
20 |
&
3 | |
35 |
&-
3 | |
140 |
&
8 | |
35 |
&
117 | |
140 |
&
9 | |
5 |
\ 1&0&
1 | |
28 |
&
3 | |
7 |
&
33 | |
28 |
&
16 | |
7 |
&
15 | |
4 |
\ \hline&1&2&3&4&5&6\end{array}\ c7,5=
11 | |
35 |
\end{array}
\begin{array}{c}\begin{array}{c|cccccc}5&5&
22 | |
7 |
&
12 | |
7 |
&
5 | |
7 |
&
1 | |
7 |
&0\ 4&
23 | |
8 |
&
85 | |
56 |
&
33 | |
56 |
&
5 | |
56 |
&
1 | |
56 |
&
3 | |
8 |
\ 3&
4 | |
3 |
&
10 | |
21 |
&
1 | |
21 |
&
1 | |
21 |
&
10 | |
21 |
&
4 | |
3 |
\ 2&
3 | |
8 |
&
1 | |
56 |
&
5 | |
56 |
&
33 | |
56 |
&
85 | |
56 |
&
23 | |
8 |
\ 1&0&
1 | |
7 |
&
5 | |
7 |
&
12 | |
7 |
&
22 | |
7 |
&5\ \hline&1&2&3&4&5&6\end{array}\ c7,6=
6 | |
7 |
\end{array}
The A-series minimal model with indices
(p,q)
SU(2)k x SU(2)1 | |
SU(2)k+1 |
, where k=
q | |
p-q |
-2 .
p>q
k
p=q+1
There exist other realizations of certain minimal models, diagonal or not, as cosets of WZW models, not necessarily based on the group
SU(2)
For any central charge
c\inC
infty | |
l{S}=oplus | |
r,s=1 |
l{R}r,s ⊗ \bar{l{R}}r,s .
cp,q
Since Liouville theory reduces to a generalized minimal model when the fields are taken to be degenerate,[4] it further reduces to an A-series minimal model when the central charge is then sent to
cp,q
Moreover, A-series minimal models have a well-defined limit as
c\to1
c\to1+
There are three cases of minimal models that are products of two minimal models.[7] At the level of their spectrums, the relations are:
A-series | |
l{S} | |
2,5 |
⊗
A-series | |
l{S} | |
2,5 |
=
D-series | |
l{S} | |
3,10 |
,
A-series | |
l{S} | |
2,5 |
⊗
A-series | |
l{S} | |
3,4 |
E-series | |
= l{S} | |
5,12 |
,
A-series | |
l{S} | |
2,5 |
⊗
A-series | |
l{S} | |
2,7 |
=
E-series | |
l{S} | |
7,30 |
.
If
q\equiv0\bmod4
(p,q)