Minicell Explained
In bacteriology, minicells are bacterial cells that are smaller than usual. The first minicells reported were from a strain of Escherichia coli that had a mutation in the Min System that lead to mis-localization of the septum during cell division and the production of cells of random sizes.[1] [2]
Generation of minicells
The first report of minicells in the scientific literature dates to 1930., but the first use of the name "minicell" dates to 1967
Minicells of a variety of gram negative[3] and gram positive[4] [5] bacteria, including Escherichia coli[6] and Salmonella enterica,[7] have been reported, but in principle, minicells could be generated for any bacterial species that can be genetically edited. Minicells can not reproduce because they do not contain a full copy of the genome.[8]
Normal role of minicells in bacteriology
Scientists hypothesize that minicells are produced by normal bacteria in times of stress so that damaged areas of the cell can be expelled.
Applications of minicells
Minicells have been extensively used to study ultrastructure of bacteria using electron cryotomography (cryoET).[9] [10] [11] Minicells are ideal for cryoET because they are small enough for the electron beam to penetrate in transmission electron microscopy.
Bacterial minicells are being developed as a drug delivery system.[12] [13] Minicells could be used to deliver genetic material to eukaryotic cells for gene editing.[14] They are also being investigated for vaccine development.[15]
Further reading
Notes and References
- de Boer. Piet A.J.. Crossley. Robin E.. Rothfield. Lawrence I.. February 1989. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell. en. 56. 4. 641–649. 10.1016/0092-8674(89)90586-2. 2645057. 7650379.
- Adler. H. I.. Fisher. W. D.. Cohen. A.. Hardigree. A. A.. 1967-02-01. MINIATURE escherichia coli CELLS DEFICIENT IN DNA. Proceedings of the National Academy of Sciences. en. 57. 2. 321–326. 10.1073/pnas.57.2.321. 0027-8424. 335508. 16591472. 1967PNAS...57..321A. free.
- Treuner-Lange. Anke. Aguiluz. Kryssia. van der Does. Chris. Gómez-Santos. Nuria. Harms. Andrea. Schumacher. Dominik. Lenz. Peter. Hoppert. Michael. Kahnt. Jörg. Muñoz-Dorado. José. Søgaard-Andersen. Lotte. January 2013. PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus: Regulation of cell division in M. xanthus. Molecular Microbiology. en. 87. 2. 235–253. 10.1111/mmi.12094. 23145985. 206191217. free.
- Lee. Jin-Young. Choy. Hyon E.. Lee. Jin-Ho. Kim. Geun-Joong. 2015-04-28. Generation of Minicells from an Endotoxin-Free Gram-Positive Strain Corynebacterium glutamicum. Journal of Microbiology and Biotechnology. en. 25. 4. 554–558. 10.4014/jmb.1408.08037. 25341464. 1017-7825. free.
- Reeve. John N.. Mendelson. Neil H.. Coyne. Sheila I.. Hallock. Linda L.. 1973-05-01. Minicells of Bacillus subtilis. Journal of Bacteriology. en. 114. 2. 860–873. 10.1128/jb.114.2.860-873.1973. 0021-9193. 4196259. 251848.
- Ward. John E.. Lutkenhaus. Joe. October 1985. Overproduction of FtsZ induces minicell formation in E. coli. Cell. en. 42. 3. 941–949. 10.1016/0092-8674(85)90290-9. 2996784. 36603663.
- Kawamoto. Akihiro. Morimoto. Yusuke V.. Miyata. Tomoko. Minamino. Tohru. Hughes. Kelly T.. Kato. Takayuki. Namba. Keiichi. December 2013. Common and distinct structural features of Salmonella injectisome and flagellar basal body. Scientific Reports. en. 3. 1. 3369. 10.1038/srep03369. 2045-2322. 3842551. 24284544. 2013NatSR...3E3369K.
- Rang. Camilla U.. Proenca. Audrey. Buetz. Christen. Shi. Chao. Chao. Lin. 2018-09-19. Bowman. Grant R.. Minicells as a Damage Disposal Mechanism in Escherichia coli. mSphere. en. 3. 5. e00428–18, /msphere/3/5/mSphere428–18.atom. 10.1128/mSphere.00428-18. 2379-5042. 6147132. 30232168.
- Farley. Madeline M.. Hu. Bo. Margolin. William. Liu. Jun. 2016-04-15. de Boer. P.. Minicells, Back in Fashion. Journal of Bacteriology. en. 198. 8. 1186–1195. 10.1128/JB.00901-15. 0021-9193. 4859596. 26833418.
- Liu. Jun. Chen. Cheng-Yen. Shiomi. Daisuke. Niki. Hironori. Margolin. William. September 2011. Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli. Virology. en. 417. 2. 304–311. 10.1016/j.virol.2011.06.005. 3163801. 21745674.
- Briegel. A.. Li. X.. Bilwes. A. M.. Hughes. K. T.. Jensen. G. J.. Crane. B. R.. 2012-03-06. Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proceedings of the National Academy of Sciences. en. 109. 10. 3766–3771. 10.1073/pnas.1115719109. 0027-8424. 3309718. 22355139. 2012PNAS..109.3766B. free.
- Web site: Recombinant Bacterial Minicells (rBMCs). Vaxiion Therapeutics. en. 2020-03-19.
- MacDiarmid. Jennifer A.. Mugridge. Nancy B.. Weiss. Jocelyn C.. Phillips. Leo. Burn. Adam L.. Paulin. Richard P.. Haasdyk. Joel E.. Dickson. Kristie-Ann. Brahmbhatt. Vatsala N.. Pattison. Scott T.. James. Alexander C.. May 2007. Bacterially Derived 400 nm Particles for Encapsulation and Cancer Cell Targeting of Chemotherapeutics. Cancer Cell. en. 11. 5. 431–445. 10.1016/j.ccr.2007.03.012. 17482133. free.
- Giacalone. Matthew J.. Gentile. Angela M.. Lovitt. Brian T.. Xu. Tong. Surber. Mark W.. Sabbadini. Roger A.. October 2006. The use of bacterial minicells to transfer plasmid DNA to eukaryotic cells. Cellular Microbiology. en. 8. 10. 1624–1633. 10.1111/j.1462-5822.2006.00737.x. 16984417. 39889761. 1462-5814.
- Carleton. Heather A.. Lara-Tejero. María. Liu. Xiaoyun. Galán. Jorge E.. June 2013. Engineering the type III secretion system in non-replicating bacterial minicells for antigen delivery. Nature Communications. en. 4. 1. 1590. 10.1038/ncomms2594. 2041-1723. 3693737. 23481398. 2013NatCo...4.1590C.