Trisodium dicarboxymethyl alaninate explained

Trisodium N-(1-carboxylatoethyl)iminodiacetate, methylglycinediacetic acid trisodium salt (MGDA-Na3) or trisodium α-DL-alanine diacetate (α-ADA), is the trisodium anion of N-(1-carboxyethyl)iminodiacetic acid and a tetradentate complexing agent. It forms stable 1:1 chelate complexes with cations having a charge number of at least +2, e.g. the "hard water forming" cations Ca2+ or Mg2+. α-ADA is distinguished from the isomeric β-alaninediacetic acid by better biodegradability and therefore improved environmental compatibility.[1]

Production

The patent literature on the industrial synthesis of trisodium N-(1-carboxylatoethyl)iminodiacetate describes the approaches for solving the key requirements of a manufacturing process that can be implemented on an industrial scale, characterized by

An obvious synthesis route to α-alaninediacetic acid is from racemic α-DL-alanine, which provides racemic α-ADA by double cyanomethylation with methanal and hydrogen cyanide, hydrolysis of the intermediately formed diacetonitrile to the trisodium salt and subsequent acidification with mineral acids in a 97.4% overall yield.[2] In a later patent specification, however, only an overall yield of 77% and an NTA content of 0.1% is achieved with practically the same quantities of substances and under practically identical reaction conditions.[3]

This later patent specification also indicates a process route via alaninonitrile, which is obtained by Strecker synthesis from hydrogen cyanide, ammonia and methanal and converted to methylglycinonitrile-N,N-diacetonitrile by double cyanomethylation (step 1). The three nitrile groups are then hydrolyzed with sodium hydroxide to α-ADA (step 2). The total yield is given as 72%, the NTA content as 0.07%.

One variant of the reaction involves iminodiacetonitrile or iminodiacetic acid (step 1'), which reacts in a weakly acidic medium (pH 6) with hydrogen cyanide and ethanal to form methylglycinonitrile-N,N-diacetic acid, the nitrile group of which is hydrolyzed with sodium hydroxide to trisodium N-(1-carboxylatoethyl)iminodiacetate (step 2'). The reactant iminodiacetic acid is accessible at low cost by dehydrogenation of diethanolamine. Again, the total yield is given as 72%, the NTA content as 0.07%.

A further variant is suitable for continuous production, in which ammonia, methanal and hydrogen cyanide react at pH 6 to form iminodiacetonitrile, which in a strongly acidic medium (pH 1.5) reacts with ethanal to produce trinitrile methylglycinonitrile-N,N-diacetonitrile in a very good yield of 92%. (step 1).

Alkaline hydrolysis (step 2) results in a total yield of 85% trisodium N-(1-carboxylatoethyl)iminodiacetate with an NTA content of 0.08%. This process variant seems to fulfil the above-mentioned criteria best.

A low by-product synthesis route for trisodium N-(1-carboxylatoethyl)iminodiacetate has recently been described, in which alanine is ethoxylated with ethylene oxide in an autoclave to form bis-hydroxyethylaminoalanine and then oxidized to α-ADA at 190 °C with Raney copper under pressure.[4]

The yields are over 90% d.Th., the NTA contents below 1%. The process conditions make this variant rather less attractive.

Properties

The commercially available trisodium N-(1-carboxylatoethyl)iminodiacetate (84% by weight) is a colourless, water-soluble solid whose aqueous solutions are rapidly and completely degraded even by non-adapted bacteria. Aquatic toxicity to fish, daphnia and algae is low.[5] Trisodium N-(1-carboxylatoethyl)iminodiacetate is described as readily biodegradable (OECD 301C) and is eliminated to >90 % in wastewater treatment plants.[6] Trisodium N-(1-carboxylatoethyl)iminodiacetate has not yet been detected in the discharge of municipal and industrial sewage treatment plants. In addition to their very good biodegradability, trisodium N-(1-carboxylatoethyl)iminodiacetate solutions are characterized by high chemical stability even at temperatures above 200 °C (under pressure) in a wide pH range between 2 and 14 as well as high complex stability compared to other complexing agents of the aminopolycarboxylate type.[7] [8]

The following table shows the complexing constants log K of α-ADA compared to tetrasodium iminodisuccinate and ethylenediaminetetraacetic acid (EDTA) versus polyvalent metal ions:

Metal ions MGDA IDS[9] EDTA[10]
Ba2+ 4.9 3.4 7.9
Ag+ 3.9 7.3
Sr2+ 5.2 4.1
Ca2+ 7.0 5.2 10.6
Mg2+ 5.8 6.1 8.7
Mn2+ 8.4 7.7 13.8
Fe2+ 8.1 8.2 14.3
Cd2+ 10.6 8.4 16.5
Cr3+ 9.6
Co2+ 11.1 10.5 16.3
Zn2+ 10.9 10.8 16.5
Pb2+ 12.1 11.0 18.0
Ni2+ 12.0 12.2 18.6
Cu2+ 13.9 13.1 18.8
Al3+ 14.1 16.1
Hg2+ 14.9 21.8
Fe3+ 16.5 15.2 25.1

The complex formation constants of the biodegradable chelators α-ADA and IDS are in a range suitable for industrial use, but clearly below those of the previous standard EDTA.

In solid preparations, trisodium N-(1-carboxylatoethyl)iminodiacetate is stable against oxidizing agents such as perborates and percarbonates, but not against oxidizing acids or sodium hypochlorite.

Use

Like other complexing agents in the aminopolycarboxylic acid class, trisodium N-(1-carboxylatoethyl)iminodiacetate (α-ADA) finds due to its ability to form stable chelate complexes with polyvalent ions (in particular the water hardening agents Ca2+ and Mg2+, as well as transition and heavy metal ions such as Fe3+, Mn2+, Cu2+, etc.) use in water softening, in detergents and cleaning agents, in electroplating, cosmetics, paper and textile production. Due to its stability at high temperatures and pH values, α-ADA should be particularly suitable as a substitute for the phosphates banned in the EU from 2017, such as sodium tripolyphosphate (STPP)[11] in tabs for dishwashers.

BASF SE is the most important manufacturer of α-ADA under the brand name Trilon M, has large-scale plants in Ludwigshafen and Lima, Ohio, and is currently expanding its existing capacities with another large-scale plant at Evonik's site in Theodore, Alabama.[12]

References

  1. [Environmental Protection Agency]
  2. WO. 9429421. Use of glycine-N,N-diacetic acid derivatives as biodegradable complexing agents for alkaline earth metal ions and heavy metal ions, and methods of preparing them. 1994-12-22 . J. Schneider et al.. BASF AG.
  3. US. 5849950. Preparation of glycine-N,N-diacetic acid derivatives. 1998-12-15 . T. Greindl et al.. BASF AG.
  4. EP. 2547648. Verfahren zur Herstellung nebenproduktarmer Aminocarboxylate. 2013-01-23 . R. Baumann et al.. BASF SE.
  5. BASF, Sicherheitsdatenblatt: Trilon M Powder MSDS
  6. Hessisches Landesamt für Umwelt und Geologie, 6.12 Komplexbildner. 2003, S. 12/6.
  7. BASF SE, Technical Information: Trilon M Types
  8. 10.1016/j.desal.2008.02.024. Studies of application of monodisperse anion exchangers in sorption of heavy metal complexes with IDS. Desalination. 239. 1–3. 216–228. 2009. Kołodyńska. Dorota. Hubicka. Halina. Hubicki. Zbigniew. 2009Desal.239..216K. .
  9. Lanxess AG, General Product Information: Baypure
  10. BASF SE, Technical Information: Trilon B Types (Dec 2013)
  11. SEPAWA, Rückblick 2013, Abstracts: Wasch- und Reinigungsmittel Session Reinigen und Hygiene, Jürgen Kielholz: Phosphatfreie Reiniger für maschinelle Geschirrspüler
  12. BASF SE: No more tea stains and chalky deposits