Mechanical calculator explained

A mechanical calculator, or calculating machine, is a mechanical device used to perform the basic operations of arithmetic automatically, or (historically) a simulation such as an analog computer or a slide rule. Most mechanical calculators were comparable in size to small desktop computers and have been rendered obsolete by the advent of the electronic calculator and the digital computer.

Surviving notes from Wilhelm Schickard in 1623 reveal that he designed and had built the earliest of the modern attempts at mechanizing calculation. His machine was composed of two sets of technologies: first an abacus made of Napier's bones, to simplify multiplications and divisions first described six years earlier in 1617, and for the mechanical part, it had a dialed pedometer to perform additions and subtractions. A study of the surviving notes shows a machine that would have jammed after a few entries on the same dial,[1] and that it could be damaged if a carry had to be propagated over a few digits (like adding 1 to 999).[2] Schickard abandoned his project in 1624 and never mentioned it again until his death 11 years later in 1635.

Two decades after Schickard's supposedly failed attempt, in 1642, Blaise Pascal decisively solved these particular problems with his invention of the mechanical calculator.[3] Co-opted into his father's labour as tax collector in Rouen, Pascal designed the calculator to help in the large amount of tedious arithmetic required;[4] it was called Pascal's Calculator or Pascaline.[5]

In 1672, Gottfried Leibniz started designing an entirely new machine called the Stepped Reckoner. It used a stepped drum, built by and named after him, the Leibniz wheel, was the first two-motion calculator, the first to use cursors (creating a memory of the first operand) and the first to have a movable carriage. Leibniz built two Stepped Reckoners, one in 1694 and one in 1706.[6] The Leibniz wheel was used in many calculating machines for 200 years, and into the 1970s with the Curta hand calculator, until the advent of the electronic calculator in the mid-1970s. Leibniz was also the first to promote the idea of an Pinwheel calculator.

Thomas' arithmometer, the first commercially successful machine, was manufactured two hundred years later in 1851; it was the first mechanical calculator strong enough and reliable enough to be used daily in an office environment. For forty years the arithmometer was the only type of mechanical calculator available for sale until the industrial production of the more successful Odhner Arithmometer in 1890.[7]

The comptometer, introduced in 1887, was the first machine to use a keyboard that consisted of columns of nine keys (from 1 to 9) for each digit. The Dalton adding machine, manufactured in 1902, was the first to have a 10 key keyboard.[8] Electric motors were used on some mechanical calculators from 1901.[9] In 1961, a comptometer type machine, the Anita Mk VII from Sumlock comptometer Ltd., became the first desktop mechanical calculator to receive an all-electronic calculator engine, creating the link in between these two industries and marking the beginning of its decline. The production of mechanical calculators came to a stop in the middle of the 1970s closing an industry that had lasted for 120 years.

Charles Babbage designed two new kinds of mechanical calculators, which were so big that they required the power of a steam engine to operate, and that were too sophisticated to be built in his lifetime. The first one was an automatic mechanical calculator, his difference engine, which could automatically compute and print mathematical tables. In 1855, Georg Scheutz became the first of a handful of designers to succeed at building a smaller and simpler model of his difference engine.[10] The second one was a programmable mechanical calculator, his analytical engine, which Babbage started to design in 1834; "in less than two years he had sketched out many of the salient features of the modern computer. A crucial step was the adoption of a punched card system derived from the Jacquard loom"[11] making it infinitely programmable.[12] In 1937, Howard Aiken convinced IBM to design and build the ASCC/Mark I, the first machine of its kind, based on the architecture of the analytical engine;[13] when the machine was finished some hailed it as "Babbage's dream come true".[14]

Ancient history

A short list of other precursors to the mechanical calculator must include a group of mechanical analog computers which, once set, are only modified by the continuous and repeated action of their actuators (crank handle, weight, wheel, water...). Before the common era, there are odometers and the Antikythera mechanism, a seemingly out of place, unique, geared astronomical clock, followed more than a millennium later by early mechanical clocks, geared astrolabes and followed in the 15th century by pedometers. These machines were all made of toothed gears linked by some sort of carry mechanisms. These machines always produce identical results for identical initial settings unlike a mechanical calculator where all the wheels are independent but are also linked together by the rules of arithmetic.

The 17th century

Overview

The 17th century marked the beginning of the history of mechanical calculators, as it saw the invention of its first machines, including Pascal's calculator, in 1642.[4] [15] Blaise Pascal had invented a machine which he presented as being able to perform computations that were previously thought to be only humanly possible.[16]

The 17th century also saw the invention of some very powerful tools to aid arithmetic calculations like Napier's bones, logarithmic tables and the slide rule which, for their ease of use by scientists in multiplying and dividing, ruled over and impeded the use and development of mechanical calculators[17] until the production release of the arithmometer in the mid 19th century.

Invention of the mechanical calculator

In 1623 and 1624 Wilhelm Schickard, in two letters that he sent to Johannes Kepler, reported his design and construction of what he referred to as an “arithmeticum organum” (“arithmetical instrument”), which would later be described as a Rechenuhr (calculating clock). The machine was designed to assist in all the four basic functions of arithmetic (addition, subtraction, multiplication and division). Amongst its uses, Schickard suggested it would help in the laborious task of calculating astronomical tables. The machine could add and subtract six-digit numbers, and indicated an overflow of this capacity by ringing a bell. The adding machine in the base was primarily provided to assist in the difficult task of adding or multiplying two multi-digit numbers. To this end an ingenious arrangement of rotatable Napier's bones were mounted on it. It even had an additional "memory register" to record intermediate calculations. Whilst Schickard noted that the adding machine was working, his letters mention that he had asked a professional, a clockmaker named Johann Pfister, to build a finished machine. Regrettably it was destroyed in a fire either whilst still incomplete, or in any case before delivery. Schickard abandoned his project soon after. He and his entire family were wiped out in 1635 by bubonic plague during the Thirty Years' War.

Schickard's machine used clock wheels which were made stronger and were therefore heavier, to prevent them from being damaged by the force of an operator input. Each digit used a display wheel, an input wheel and an intermediate wheel. During a carry transfer all these wheels meshed with the wheels of the digit receiving the carry.

Blaise Pascal invented a mechanical calculator with a sophisticated carry mechanism in 1642. After three years of effort and 50 prototypes[18] he introduced his calculator to the public. He built twenty of these machines in the following ten years.[19] This machine could add and subtract two numbers directly and multiply and divide by repetition. Since, unlike Schickard's machine, the Pascaline dials could only rotate in one direction zeroing it after each calculation required the operator to dial in all 9s and then (method of) propagate a carry right through the machine.[20] This suggests that the carry mechanism would have proved itself in practice many times over. This is a testament to the quality of the Pascaline because none of the 17th and 18th century criticisms of the machine mentioned a problem with the carry mechanism and yet it was fully tested on all the machines, by their resets, all the time.[21]

In 1672, Gottfried Leibniz started working on adding direct multiplication to what he understood was the working of Pascal's calculator. However, it is doubtful that he had ever fully seen the mechanism and the method could not have worked because of the lack of reversible rotation in the mechanism. Accordingly, he eventually designed an entirely new machine called the Stepped Reckoner; it used his Leibniz wheels, was the first two-motion calculator, the first to use cursors (creating a memory of the first operand) and the first to have a movable carriage. Leibniz built two Stepped Reckoners, one in 1694 and one in 1706.[22] Only the machine built in 1694 is known to exist; it was rediscovered at the end of the 19th century having been forgotten in an attic in the University of Göttingen.[6] Leibniz had invented his namesake wheel and the principle of a two-motion calculator, but after forty years of development he wasn't able to produce a machine that was fully operational;[23] this makes Pascal's calculator the only working mechanical calculator in the 17th century. Leibniz was also the first person to describe a pinwheel calculator.[24] He once said "It is unworthy of excellent men to lose hours like slaves in the labour of calculation which could safely be relegated to anyone else if machines were used."[25]

Other calculating machines

Schickard, Pascal and Leibniz were inevitably inspired by the role of clockwork which was highly celebrated in the seventeenth century.[26] However, simple-minded application of interlinked gears was insufficient for any of their purposes. Schickard introduced the use of a single toothed "mutilated gear" to enable the carry to take place. Pascal improved on that with his famous weighted sautoir. Leibniz went even further in relation to the ability to use a moveable carriage to perform multiplication more efficiently, albeit at the expense of a fully working carry mechanism.

The principle of the clock (input wheels and display wheels added to a clock like mechanism) for a direct-entry calculating machine couldn't be implemented to create a fully effective calculating machine without additional innovation with the technological capabilities of the 17th century.[27] because their gears would jam when a carry had to be moved several places along the accumulator. The only 17th-century calculating clocks that have survived to this day do not have a machine-wide carry mechanism and therefore cannot be called fully effective mechanical calculators. A much more successful calculating clock was built by the Italian Giovanni Poleni in the 18th century and was a two-motion calculating clock (the numbers are inscribed first and then they are processed).

The 18th century

Overview

The 18th century saw the first mechanical calculator that could perform a multiplication automatically; designed and built by Giovanni Poleni in 1709 and made of wood, it was the first successful calculating clock. For all the machines built in this century, division still required the operator to decide when to stop a repeated subtraction at each index, and therefore these machines were only providing a help in dividing, like an abacus. Both pinwheel calculators and Leibniz wheel calculators were built with a few unsuccessful attempts at their commercialization.

Prototypes and limited runs

The 19th century

Overview

Luigi Torchi invented the first direct multiplication machine in 1834.[51] This was also the second key-driven machine in the world, following that of James White (1822).[52]

The mechanical calculator industry started in 1851 Thomas de Colmar released his simplified Arithmomètre, which was the first machine that could be used daily in an office environment.

For 40 years,[53] the arithmometer was the only mechanical calculator available for sale and was sold all over the world. By 1890, about 2,500 arithmometers had been sold[54] plus a few hundreds more from two licensed arithmometer clone makers (Burkhardt, Germany, 1878 and Layton, UK, 1883). Felt and Tarrant, the only other competitor in true commercial production, had sold 100 comptometers in three years.[55]

The 19th century also saw the designs of Charles Babbage calculating machines, first with his difference engine, started in 1822, which was the first automatic calculator since it continuously used the results of the previous operation for the next one, and second with his analytical engine, which was the first programmable calculator, using Jacquard's cards to read program and data, that he started in 1834, and which gave the blueprint of the mainframe computers built in the middle of the 20th century.[56]

Desktop calculators produced

Automatic mechanical calculators

Programmable mechanical calculators

Cash registers

The cash register, invented by the American saloonkeeper James Ritty in 1879, addressed the old problems of disorganization and dishonesty in business transactions.[69] It was a pure adding machine coupled with a printer, a bell and a two-sided display that showed the paying party and the store owner, if he wanted to, the amount of money exchanged for the current transaction.

The cash register was easy to use and, unlike genuine mechanical calculators, was needed and quickly adopted by a great number of businesses. "Eighty four companies sold cash registers between 1888 and 1895, only three survived for any length of time".[70]

In 1890, 6 years after John Patterson started NCR Corporation, 20,000 machines had been sold by his company alone against a total of roughly 3,500 for all genuine calculators combined.[71]

By 1900, NCR had built 200,000 cash registers[72] and there were more companies manufacturing them, compared to the "Thomas/Payen" arithmometer company that had just sold around 3,300[73] and Burroughs had only sold 1,400 machines.[74]

Prototypes and limited runs

1900s to 1970s

See also: History of computing hardware.

Mechanical calculators reach their zenith

Two different classes of mechanisms had become established by this time, reciprocating and rotary. The former type of mechanism was operated typically by a limited-travel hand crank; some internal detailed operations took place on the pull, and others on the release part of a complete cycle. The illustrated 1914 machine is this type; the crank is vertical, on its right side. Later on, some of these mechanisms were operated by electric motors and reduction gearing that operated a crank and connecting rod to convert rotary motion to reciprocating.

The latter type, rotary, had at least one main shaft that made one [or more] continuous revolution[s], one addition or subtraction per turn. Numerous designs, notably European calculators, had handcranks, and locks to ensure that the cranks were returned to exact positions once a turn was complete.

The first half of the 20th century saw the gradual development of the mechanical calculator mechanism.

The Dalton adding-listing [//upload.wikimedia.org/wikipedia/commons/c/c5/Addizionatrice_Dalton.jpg machine] introduced in 1902 was the first of its type to use only ten keys, and became the first of many different models of "10-key add-listers" manufactured by many companies.

In 1948 the cylindrical Curta calculator, which was compact enough to be held in one hand, was introduced after being developed by Curt Herzstark in 1938. This was an extreme development of the stepped-gear calculating mechanism. It subtracted by adding complements; between the teeth for addition were teeth for subtraction.

From the early 1900s through the 1960s, mechanical calculators dominated the desktop computing market. Major suppliers in the USA included Friden, Monroe, and SCM/Marchant. These devices were motor-driven, and had movable carriages where results of calculations were displayed by dials. Nearly all keyboards were full – each digit that could be entered had its own column of nine keys, 1..9, plus a column-clear key, permitting entry of several digits at once. (See the illustration below of a Marchant Figurematic.) One could call this parallel entry, by way of contrast with ten-key serial entry that was commonplace in mechanical adding machines, and is now universal in electronic calculators. (Nearly all Friden calculators, as well as some rotary (German) Diehls had a ten-key auxiliary keyboard for entering the multiplier when doing multiplication.) Full keyboards generally had ten columns, although some lower-cost machines had eight. Most machines made by the three companies mentioned did not print their results, although other companies, such as Olivetti, did make printing calculators.

In these machines, addition and subtraction were performed in a single operation, as on a conventional adding machine, but multiplication and division were accomplished by repeated mechanical additions and subtractions. Friden made a calculator that also provided square roots, basically by doing division, but with added mechanism that automatically incremented the number in the keyboard in a systematic fashion. The last of the mechanical calculators were likely to have short-cut multiplication, and some ten-key, serial-entry types had decimal-point keys. However, decimal-point keys required significant internal added complexity, and were offered only in the last designs to be made. Handheld mechanical calculators such as the 1948 Curta continued to be used until they were displaced by electronic calculators in the 1970s.

Typical European four-operation machines use the Odhner mechanism, or variations of it. This kind of machine included the Original Odhner, Brunsviga and several following imitators, starting from Triumphator, Thales, Walther, Facit up to Toshiba. Although most of these were operated by handcranks, there were motor-driven versions. Hamann calculators externally resembled pinwheel machines, but the setting lever positioned a cam that disengaged a drive pawl when the dial had moved far enough.

Although Dalton introduced in 1902 first 10-key printing adding (two operations, the other being subtraction) machine, these features were not present in computing (four operations) machines for many decades. Facit-T (1932) was the first 10-key computing machine sold in large numbers. Olivetti Divisumma-14 (1948) was the first computing machine with both printer and a 10-key keyboard.

Full-keyboard machines, including motor-driven ones, were also built until the 1960s. Among the major manufacturers were Mercedes-Euklid, Archimedes, and MADAS in Europe; in the USA, Friden, Marchant, and Monroe were the principal makers of rotary calculators with carriages. Reciprocating calculators (most of which were adding machines, many with integral printers) were made by Remington Rand and Burroughs, among others. All of these were key-set. Felt & Tarrant made Comptometers, as well as Victor, which were key-driven.

The basic mechanism of the Friden and Monroe was a modified Leibniz wheel (better known, perhaps informally, in the USA as a "stepped drum" or "stepped reckoner"). The Friden had an elementary reversing drive between the body of the machine and the accumulator dials, so its main shaft always rotated in the same direction. The Swiss MADAS was similar. The Monroe, however, reversed direction of its main shaft to subtract.

The earliest Marchants were pinwheel machines, but most of them were remarkably sophisticated rotary types. They ran at 1,300 addition cycles per minute if the [+] bar is held down. Others were limited to 600 cycles per minute, because their accumulator dials started and stopped for every cycle; Marchant dials moved at a steady and proportional speed for continuing cycles. Most Marchants had a row of nine keys on the extreme right, as shown in the photo of the Figurematic. These simply made the machine add for the number of cycles corresponding to the number on the key, and then shifted the carriage one place. Even nine add cycles took only a short time.

In a Marchant, near the beginning of a cycle, the accumulator dials moved downward "into the dip", away from the openings in the cover. They engaged drive gears in the body of the machine, which rotated them at speeds proportional to the digit being fed to them, with added movement (reduced 10:1) from carries created by dials to their right. At the completion of the cycle, the dials would be misaligned like the pointers in a traditional watt-hour meter. However, as they came up out of the dip, a constant-lead disc cam realigned them by way of a (limited-travel) spur-gear differential. As well, carries for lower orders were added in by another, planetary differential. (The machine shown has 39 differentials in its [20-digit] accumulator!)

In any mechanical calculator, in effect, a gear, sector, or some similar device moves the accumulator by the number of gear teeth that corresponds to the digit being added or subtracted – three teeth changes the position by a count of three. The great majority of basic calculator mechanisms move the accumulator by starting, then moving at a constant speed, and stopping. In particular, stopping is critical, because to obtain fast operation, the accumulator needs to move quickly. Variants of Geneva drives typically block overshoot (which, of course, would create wrong results).

However, two different basic mechanisms, the Mercedes-Euklid and the Marchant, move the dials at speeds corresponding to the digit being added or subtracted; a [1] moves the accumulator the slowest, and a [9], the fastest. In the Mercedes-Euklid, a long slotted lever, pivoted at one end, moves nine racks ("straight gears") endwise by distances proportional to their distance from the lever's pivot. Each rack has a drive pin that is moved by the slot. The rack for [1] is closest to the pivot, of course.For each keyboard digit, a sliding selector gear, much like that in the Leibniz wheel, engages the rack that corresponds to the digit entered. Of course, the accumulator changes either on the forward or reverse stroke, but not both. This mechanism is notably simple and relatively easy to manufacture.

The Marchant, however, has, for every one of its ten columns of keys, a nine-ratio "preselector transmission" with its output spur gear at the top of the machine's body; that gear engages the accumulator gearing. When one tries to work out the numbers of teeth in such a transmission, a straightforward approach leads one to consider a mechanism like that in mechanical gasoline pump registers, used to indicate the total price. However, this mechanism is seriously bulky, and utterly impractical for a calculator; 90-tooth gears are likely to be found in the gas pump. Practical gears in the computing parts of a calculator cannot have 90 teeth. They would be either too big, or too delicate.

Given that nine ratios per column implies significant complexity, a Marchant contains a few hundred individual gears in all, many in its accumulator. Basically, the accumulator dial has to rotate 36 degrees (1/10 of a turn) for a [1], and 324 degrees (9/10 of a turn) for a [9], not allowing for incoming carries. At some point in the gearing, one tooth needs to pass for a [1], and nine teeth for a [9]. There is no way to develop the needed movement from a driveshaft that rotates one revolution per cycle with few gears having practical (relatively small) numbers of teeth.

The Marchant, therefore, has three driveshafts to feed the little transmissions. For one cycle, they rotate 1/2, 1/4, and 1/12 of a revolution. http://www.johnwolff.id.au/calculators/Tech/MarchantDRX/Actuator.htm. The 1/2-turn shaft carries (for each column) gears with 12, 14, 16, and 18 teeth, corresponding to digits 6, 7, 8, and 9. The 1/4-turn shaft carries (also, each column) gears with 12, 16, and 20 teeth, for 3, 4, and 5. Digits [1] and [2] are handled by 12 and 24-tooth gears on the 1/12-revolution shaft. Practical design places the 12th-rev. shaft more distant, so the 1/4-turn shaft carries freely-rotating 24 and 12-tooth idler gears. For subtraction, the driveshafts reversed direction.

In the early part of the cycle, one of five pendants moves off-center to engage the appropriate drive gear for the selected digit.

Some machines had as many as 20 columns in their full keyboards. The monster in this field was the Duodecillion made by Burroughs for exhibit purposes.

For sterling currency, £/s/d (and even farthings), there were variations of the basic mechanisms, in particular with different numbers of gear teeth and accumulator dial positions. To accommodate shillings and pence, extra columns were added for the tens digit[s], 10 and 20 for shillings, and 10 for pence. Of course, these functioned as radix-20 and radix-12 mechanisms.

A variant of the Marchant, called the Binary-Octal Marchant, was a radix-8 (octal) machine. It was sold to check very early vacuum-tube (valve) binary computers for accuracy. (Back then, the mechanical calculator was much more reliable than a tube/valve computer.)

As well, there was a twin Marchant, comprising two pinwheel Marchants with a common drive crank and reversing gearbox.[81] Twin machines were relatively rare, and apparently were used for surveying calculations. At least one triple machine was made.

The Facit calculator, and one similar to it, are basically pinwheel machines, but the array of pinwheels moves sidewise, instead of the carriage. The pinwheels are biquinary; digits 1 through 4 cause the corresponding number of sliding pins to extend from the surface; digits 5 through 9 also extend a five-tooth sector as well as the same pins for 6 through 9.

The keys operate cams that operate a swinging lever to first unlock the pin-positioning cam that is part of the pinwheel mechanism; further movement of the lever (by an amount determined by the key's cam) rotates the pin-positioning cam to extend the necessary number of pins.[82]

Stylus-operated adders with circular slots for the stylus, and side-by -side wheels, as made by Sterling Plastics (USA), had an ingenious anti-overshoot mechanism to ensure accurate carries.

The end of an era

Mechanical calculators continued to be sold, though in rapidly decreasing numbers, into the early 1970s, with many of the manufacturers closing down or being taken over. Comptometer type calculators were often retained for much longer to be used for adding and listing duties, especially in accounting, since a trained and skilled operator could enter all the digits of a number in one movement of the hands on a comptometer quicker than was possible serially with a 10-key electronic calculator. In fact, it was quicker to enter larger digits in two strokes using only the lower-numbered keys; for instance, a 9 would be entered as 4 followed by 5. Some key-driven calculators had keys for every column, but only 1 through 5; they were correspondingly compact. The spread of the computer rather than the simple electronic calculator put an end to the comptometer. Also, by the end of the 1970s, the slide rule had become obsolete.

See also

Sources

External links

Notes and References

  1. [#WILLIAMS|Michael Williams]
  2. [#WILLIAMS|Michael Williams]
  3. Prof. René Cassin, Pascal tercentenary celebration, London, (1942), Magazine Nature
  4. [#MARG|Jean Marguin (1994)]
  5. See Pascal's calculator#Competing designs
  6. [#MARG|Jean Marguin, p. 64-65 (1994)]
  7. Beside two arithmometer clone makers from Germany and England, the only other company to offer calculators for sale was Felt & Tarrant from the USA which started selling their comptometer in 1887 but had only sold 100 machines by 1890.
  8. [#MARTIN|Ernst Martin]
  9. [#MARTIN|Ernst Martin]
  10. [#MARG,Jean Marguin]
  11. Book: Hyman, Anthony. R. Anthony Hyman. . Oxford University Press. 1982. 0-19-858170-X.
  12. "The introduction of punched cards into the new engine was important not only as a more convenient form of control than the drums, or because programs could now be of unlimited extent, and could be stored and repeated without the danger of introducing errors in setting the machine by hand; it was important also because it served to crystallize Babbage's feeling that he had invented something really new, something much more than a sophisticated calculating machine." Bruce Collier, 1970
  13. [#AIKEN|I. Bernard Cohen]
  14. [#ORIGINS|Brian Randell]
  15. Please see Pascaline#Pascal versus Schickard
  16. "The arithmetical machine produces effects which approach nearer to thought than all the actions of animals. But it does nothing which would enable us to attribute will to it, as to the animals.", Pascal, Pensées [//www.bartleby.com/48/1/6.html Bartleby.com, Great Books online, Blaise Pasdcal, Thoughts]
  17. [#SCRI|Scripta Mathematica]
  18. http://fr.wikisource.org/wiki/La_Machine_d%E2%80%99arithm%C3%A9tique (fr) La Machine d’arithmétique, Blaise Pascal
  19. [#MOUR|Guy Mourlevat, p. 12 (1988)]
  20. [#COURRIER|Courrier du CIBP]
  21. "...et si blocage il y avait, la machine était pratiquement inutilisable, ce qui ne fut jamais signalé dans les textes du XVIIIe siecle parmi ses défaults" Guy Mourlevat, p. 30 (1988)
  22. [#MARG|Jean Marguin, p. 64-65 (1994)]
  23. Morar. Florin-Stefan. March 2015. Reinventing machines: the transmission history of the Leibniz calculator. The British Journal for the History of Science. 48. 1. 123–146. 10.1017/S0007087414000429. 25833800. 38193192. 0007-0874.
  24. [#SMITH|David Smith]
  25. As quoted in
  26. See http://things-that-count.net
  27. [#WILLIAMS|Michael Williams]
  28. http://history-computer.com/MechanicalCalculators/Pioneers/Schickard.html History of computer
  29. [#WILLIAMS|Michael Williams]
  30. [#WILLIAMS|Michael Williams]
  31. "The appearance of this small avorton disturbed me to the utmost and it dampened the enthusiasm with which I was developing my calculator so much that I immediately let go all of my employees..." translated from the French: "L'aspect de ce petit avorton me déplut au dernier point et refroidit tellement l'ardeur avec laquelle je faisais lors travailler à l'accomplissement de mon modèle qu'à l'instant même je donnai congé à tous les ouvriers..."
  32. "But, later on, Lord Chancellor of France [...] granted me a royal privilege which is not usual, and which will suffocate before their birth all these illegitimate avortons which, by the way, could only be born of the legitimate and necessary alliance of theory and art." translated from the French: "Mais, quelque temps après, Monseigneur le Chancelier [...] par la grâce qu'il me fit de m'accorder un privilège qui n'est pas ordinaire, et qui étouffe avant leur naissance tous ces avortons illégitimes qui pourraient être engendrés d'ailleurs que de la légitime et nécessaire alliance de la théorie avec l'art"
  33. "...a useless piece, perfectly clean, polished and well filed on the outside but so imperfect inside that it is of no use whatsoever." translated from the French: "...qu'une pièce inutile, propre véritablement, polie et très bien limée par le dehors, mais tellement imparfaite au dedans qu'elle n'est d'aucun usage"
  34. All the quotes in this paragraph are found in (fr) Wikisource: Avis nécessaire à ceux qui auront curiosité de voir la Machine d'Arithmétique et de s'en servir.
  35. http://brunelleschi.imss.fi.it/mediciscienze/emed.asp?c=35423 Picture of Burattini's machine
  36. [#CHRONICLE|A calculator Chronicle, ''300 years of counting and reckoning tools'']
  37. [#WILLIAMS|Michael Williams]
  38. http://brunelleschi.imss.fi.it/mediciscienze/emed.asp?c=35418 Picture of Morland multiplying machine
  39. They belong to the Musée des Arts et Métiers in Paris.
  40. "Grillet's machine doesn't even deserve the name of machine" translated from the French "La machine de Grillet ne mérite donc pas même le nom de machine", Jean Marguin, p.76 (1994)
  41. http://www.museoscienza.org/approfondimenti/documenti/macchina_poleni/replica.asp Copy of Poleni's machine
  42. [#MARG|Jean Marguin, p. 93-94 (1994)]
  43. translated from the French: "De plus le report ne s'effectuant pas en cascade, la machine devait se bloquer au-delà de quelques reports simultanés", Jean Marguin, p.78 (1994)
  44. [#MARG|Jean Marguin, p.94-96 (1994)]
  45. [#MARG, Jean Marguin]
  46. [#MARGIN|Marguin, p.83 (1994)]
  47. http://www-03.ibm.com/ibm/history/exhibits/attic/attic_137.html Picture of Hahn's Calculator
  48. [#MARGIN|Jean Marguin, pages 84–86 (1994)]
  49. [#FELT|Door E. Felt, p.15-16 (1916)]
  50. Web site: CNUM – 8KU54-2.5 : p.249 – im.253. cnum.cnam.fr.
  51. Web site: History of Computers and Computing, Mechanical calculators, 19th century, Luiggi Torchi. history-computer.com. 4 January 2021 .
  52. 10.1109/MAHC.2016.46. Before Torchi and Schwilgué, There Was White. 2016. Roegel. Denis. IEEE Annals of the History of Computing. 38. 4. 92–93. 28873771 .
  53. This is one third of the 120 years that this industry lasted
  54. Web site: www.arithmometre.org. arithmometre.org.
  55. Book: Felt, Dorr E.. Mechanical arithmetic, or The history of the counting machine. Washington Institute. Chicago. 4. 1916.
  56. "The calculating engines of English mathematician Charles Babbage (1791–1871) are among the most celebrated icons in the prehistory of computing. Babbage's Difference Engine No.1 was the first successful automatic calculator and remains one of the finest examples of precision engineering of the time. Babbage is sometimes referred to as "father of computing." The International Charles Babbage Society (later the Charles Babbage Institute) took his name to honor his intellectual contributions and their relation to modern computers." Charles Babbage Institute (page. Retrieved 1 February 2012).
  57. Ifrah G., The Universal History of Numbers, vol 3, page 127, The Harvill Press, 2000
  58. Chase G.C.: History of Mechanical Computing Machinery, Vol. 2, Number 3, July 1980, IEEE Annals of the History of Computing, p. 204
  59. http://www.arithmometre.org/NumerosSerie/PageNumerosSerieEnglish.html Serial numbers and Years of manufacturing
  60. J.A.V. Turck, Origin of modern calculating machines, The Western Society of Engineers, 1921, p. 75
  61. [#TROG|G. Trogemann]
  62. David J. Shaw: The Cathedral Libraries Catalogue, The British Library and the Bibliographical Society, 1998
  63. J.A.V. Turck, Origin of modern calculating machines, The Western Society of Engineers, 1921, p. 143
  64. Web site: The "Millionaire" Calculating Machine - Technical Description. Wolff. John. 30 May 2007. John Wolff's Web Museum. 2019-12-30.
  65. [#WEB|James Essinger]
  66. "The better part of my live has now been spent on that machine, and no progress whatever having been made since 1834...", Charles Babbage, quoted in Irascible Genius, 1964, p.145
  67. "It is reasonable to inquire, therefore, whether it is possible to devise a machine which will do for mathematical computation what the automatic lathe has done for engineering. The first suggestion that such a machine could be made came more than a hundred years ago from the mathematician Charles Babbage. Babbage's ideas have only been properly appreciated in the last ten years, but we now realize that he understood clearly all the fundamental principles which are embodied in modern digital computers" B. V. Bowden, 1953, pp. 6,7
  68. Howard Aiken, 1937, reprinted in The origins of Digital computers, Selected Papers, Edited by Brian Randell, 1973
  69. http://www.ncr.org.uk/page106.html NCR Retrospective website
  70. http://www.cashregistersonline.com/history.asp History of the cash register
  71. [#TotalMachinesBuilt|See the number of machines built in 1890]
  72. http://www.brasscashregister.net/learn_more/articles/how_to_date_your_national_or_ncr_cash_register/ Dick and Joan's antique
  73. http://www.arithmometre.org/NumerosSerie/PageNumerosSeriePayen.html List of serial numbers by dates
  74. Before the computer, James W. Cortada, p.34
  75. A notable difference was that the Millionaire calculator used an internal mechanical product lookup table versus a repeated addition or subtraction until a counter was decreased down to zero and stopped the machine for the arithmometer
  76. http://www.arithmometre.org/Bibliotheque/BibNumerique/AmiDesSciences1856/AmidesSciences1856.pdf L'ami des Sciences 1856, p. 301
  77. Larousse, P. (1886), Grand dictionnaire universel du XIX siècle, Paris, entry for A-M Guerry
  78. [#CYBERSPACE|Hook & Norman]
  79. "Improved Calculating Machine", "Scientific American" Vol. XXXVI, No. 19, 12 May 1877 p.294 New York: Munn &Company (Publisher)
  80. http://www.ami19.org/BrevetsFrancais/1883Edmonson/1883Edmonson.pdf Patent application in French
  81. Web site: The Twin Marchant.
  82. Web site: John Wolff's Web Museum - Facit C1-13 - Technical Description.