Maximum-minimums identity explained

In mathematics, the maximum-minimums identity is a relation between the maximum element of a set S of n numbers and the minima of the 2n − 1 non-empty subsets of S.

Let S = . The identity states that

\begin{align} max\{x1,x2,\ldots,xn\}&=

n
\sum
i=1

xi-\sumi<jmin\{xi,xj\}+\sumi<j<kmin\{xi,xj,xk\}-\\ &    +\left(-1\right)n+1min\{x1,x2,\ldots,xn\},\end{align}

or conversely

\begin{align} min\{x1,x2,\ldots,xn\}&=

n
\sum
i=1

xi-\sumi<jmax\{xi,xj\}+\sumi<j<kmax\{xi,xj,xk\}-\\ &    +\left(-1\right)n+1max\{x1,x2,\ldots,xn\}. \end{align}

For a probabilistic proof, see the reference.

See also

References