In mathematics, the maximum-minimums identity is a relation between the maximum element of a set S of n numbers and the minima of the 2n − 1 non-empty subsets of S.
Let S = . The identity states that
\begin{align} max\{x1,x2,\ldots,xn\}&=
n | |
\sum | |
i=1 |
xi-\sumi<jmin\{xi,xj\}+\sumi<j<kmin\{xi,xj,xk\}- … \\ & … +\left(-1\right)n+1min\{x1,x2,\ldots,xn\},\end{align}
\begin{align} min\{x1,x2,\ldots,xn\}&=
n | |
\sum | |
i=1 |
xi-\sumi<jmax\{xi,xj\}+\sumi<j<kmax\{xi,xj,xk\}- … \\ & … +\left(-1\right)n+1max\{x1,x2,\ldots,xn\}. \end{align}
For a probabilistic proof, see the reference.