Magma supply rate explained

The magma supply rate measures the production rate of magma at a volcano. Global magma production rates on Earth are about 20km3/year25km3/year.[1]

Definitions

Magma supply rate is also known as the Armstrong unit, where 1 Armstrong Unit = 1km3/year.[2] Armstrong unit can also refer to volcanic flux rate per length of arc in discussions of volcanic arcs, in that case km2/year.

Sometimes in discussion of large volcanic systems such as volcanic arcs the volcanic flux rate is normalized to a surface area, similar to Darcy's law in hydrodynamics. It is often easier to measure magma supply rates when they are normalized for an exposed surface area as it is often difficult to delimit an intrusion.[3]

Measurement difficulties

Estimating the volcanic flux rate or magma supply of a volcanic system is inherently difficult for a number of reasons, and different measurements can come to different conclusions about the volcanic flux rate of a given volcanic system. Not all volcanic bodies are equally well exposed, and it is often impossible or difficult to measure magma supply rates exactly. Furthermore, volcanic flux rates often vary over time, with distinct lulls and pulses. Wall rocks may be assimilated by magma or magma may undergo differentiation such as crystallization. Magma contains vesicles and volcanic edifices are often eroded. The sizes of volcanic edifices and plutons are difficult to estimate, especially in intrusions which are mostly buried.[4]

Applications

The magma supply rate is used to infer the behaviour of volcanic systems which erupt periodically, as well as to describe the growth of the continental crust and of deep-seated magmatic bodies such as plutons. Magma output is usually larger in oceanic settings than in continental ones, and basaltic volcanic systems produce more magma than silicic ones.

Table of selected flux rates

NameRateTimespanMethodReference
Aegina volcanic field0.0004km3/kyr[5]
Altiplano-Puna volcanic complex1km3/kyr extrusive, 3km3/kyr5km3/kyr intrusive10 myaTotal volume/Duration
Altiplano-Puna volcanic complex, first pulse1.5km3/kyr extrusive, 4.5km3/kyr8km3/kyr intrusive200 kaTotal volume/Duration[6]
Altiplano-Puna volcanic complex, second pulse4.5km3/kyr extrusive, 13.5km3/kyr22.5km3/kyr intrusive600 kaTotal volume/Duration
Altiplano-Puna volcanic complex, third pulse4km3/kyr extrusive, 12km3/kyr20km3/kyr intrusive600 kaTotal volume/Duration
Altiplano-Puna volcanic complex, fourth pulse12km3/kyr extrusive, 36km3/kyr60km3/kyr intrusive350 kaTotal volume/Duration
Altiplano-Puna volcanic complex, after 4th pulse0.2km3/kyr extrusive, 0.6km3/kyr1km3/kyr intrusive2400 kaTotal volume/Duration
Arenal2.7km3/kyr7,000 yearsTotal volume/Duration[7]
Aucanquilcha, Angulo0.015km3/kyr600-200 kaTotal volume/Duration
Aucanquilcha, Azufrera0.16km3/kyr1040–920 kaTotal volume/Duration
Aucanquilcha, Cumbre Negra0.005km3/kyrOver 150 kaTotal volume/Duration
Aucanquilcha, Rodado0.09km3/kyr950–850 kaTotal volume/Duration
Aucanquilcha, edifice building phases0.16km3/kyrOver 200 kaTotal volume/Duration[8]
Aucanquilcha, later phases0.02km3/kyr800 kaTotal volume/Duration
Broken Ridge1000km3/kyr2000km3/kyrBetween 88 and 89 million years agoTotal volume/Duration[9]
Camargo volcanic field0.026km3/kyrTotal volume/Duration[10]
Caribbean large igneous province2000km3/kyrBetween 89 and 91 million years agoTotal volume/Duration
Cascades300km3/kyrA single pluton plumbing systemVolume/Duration
Central Volcanic Zone0.11km3/kyrLast 28 million years
Cerro Toledo, Jemez Caldera, intrusion35km3/kyrOver 0.33 million yearsMagma supplied/duration[11]
Chimborazo0.5km3/kyr0.7km3/kyrA single pluton plumbing systemVolume/Duration[12]
Chimborazo, Basal Edifice1km3/kyr0.7km3/kyr120-60 kaVolume/Duration
Chimborazo, Intermediary Edifice0.4km3/kyr0.7km3/kyr60–35 kaVolume/Duration
Chimborazo, Young Cone0.1km3/kyr33–14 kaVolume/Duration
Cook Islands-Austral Islands11km3/kyr25 million yearsTotal volume of edifices/age, neglecting subsidence and eroded material[13]
El Chichon0.5km3/kyrPast 8,000 yearsVolume/Duration[14]
El Hierro>0.4km3/kyrJuvenile stageTotal volume including sector collapses/Duration[15] [16]
El Misti0.63km3/kyrLast 350 kaTotal volume/Duration
Emperor Seamounts10km3/kyr80 to 45 million years agoVolume/Duration
Farallon Negro0.31km3/kyrInterpolated volume/Duration[17]
Hawaii210km3/kyrVolume including subsidence/Duration[18]
Hawaiian Islands95km3/kyr6 to 0 million years agoVolume/Duration
Hawaiian Ridge17km3/kyr45 to 0 million years agoVolume/Duration
Imbabura0.13km3/kyrPast 35,000 yearsMinimum total volume/Duration[19]
Klyuchevskaya Sopka40km3/kyrLast 6800 yearsTotal volume/Duration[20]
Lesser Antilles Volcanic Arc3km3/kyrLast 100 kaTotal volume/Duration
Marquesas Islands21km3/kyr7 million yearsTotal volume of edifices/age, neglecting subsidence and eroded material
Meidob volcanic field, whole edifice0.2km3/kyrBetween 7 and 0.3 million years agoTotal volume/Duration[21]
Menengai0.52km3/kyr[22]
Methana0.001km3/kyr
Morne Jacob, whole edificeNaNkm3/kyrDuring, 3.7 ± 0.03 MyrTotal volume/Duration
Morne Jacob, J1T0.107km3/kyr5.14 ± 0.07 and 4.10 ± 0.06 MaTotal volume (assuming basis at sea level)/Duration[23]
Morne Jacob, J2T0.02km3/kyrBetween 3.2 and 1.5 MaTotal volume (subtracting J1T)/Duration
Mount Adams volcanic field0.1km3/kyrPostglacial[24]
Mount Etna1.6km3/kyr0.4km3/kyr330,000 yearsEstimated volume/timespan[25]
Mount Etna, Timpe phase0.84km3/kyr110,000 yearsEstimated volume/timespan
Mount Etna, Valle del Bove phase2.9km3/kyr50,000 yearsEstimated volume/timespan
Mount Etna, Stratovolcano phase4.8km3/kyr60,000 yearsEstimated volume/timespan
Mount Etna700km3/kyrBased on the carbon dioxide output[26]
Mount Pelee, Mont Conil Ia0.04km3/kyr±0.01543±8-189±3 kaEdifice volume/Duration
Mount Pelee, Mont Conil Ib0.36km3/kyr±0.09Edifice volume/Duration
Mount Pelee, Paleo-Pelee0.26km3/kyr±0.08126±2–25 kaEdifice volume/Duration
Mount Pelee, Saint Vincent stage0.52km3/kyr±0.2025–9 kaEdifice volume/Duration
Mount Pelee, longterm0.13km3/kyrEdifice volume/Duration
Mount Pelee0.75km3/kyrPast 13,500 BPAverage eruption volume*Eruptions per lifespan[27]
}-->|-| Mount Sidley| 0.2km3/kyr| | | [28] |-| Nevado Tres Cruces| 0.13km3/kyr| 1.5-0.03 mya| Volume/Duration| [29] |-| Parinacota| 0.032km3/kyr| Since Late Pleistocene.| Volume/Duration| |-| Parinacota| 2.25km3/kyr| Last 8,000 years.| Volume/Duration| [30] |-| Parinacota, Young Cone prior to 8.1 ka| 10km3/kyr| 1000–2000 years long.| | [31] |-| Ruapehu| 0.6km3/kyr| 250,000 years| Total volume/Lifespan| [32] |-| Ruapehu, Mangawhero formation| 0.88km3/kyr| | | [32] |-| Ruapehu, Te Herenga formation| 0.93km3/kyr| | | [32] |-| Ruapehu, Waihianoa formation| 0.9km3/kyr| | | [32] |-| Ruapehu, Whakapapa formation| 0.17km3/kyr| | | [32] |-| Samoa| 33km3/kyr| 3 million years| Total volume of edifices/age, neglecting subsidence and eroded material| [13] |-| San Francisco Mountain| 0.2km3/kyr| ≤ 400 ka| Total volume/Duration, including landslide removals| [33] |-| San Francisco Mountain, main shield building stage| 0.3km3/kyr| ~ 100 ka| Total volume/Duration, including landslide removals| |-| San Pedro de Tatara| 0.33km3/kyr0.19km3/kyr| | Total volume/Duration, including glacially eroded volumes| [34] |-| Santa Maria| 0.12km3/kyr| 103-35 ka| | |-| Santa Maria| 0.16km3/kyr| 103 ka – 1902| | [35] |-| Sierra Nevada| 9.7km3/kyr| A single pluton plumbing system| Volume of plutons/emplacement time| |-| Society Islands| 36km3/kyr| 5 million years| Total volume of edifices/age, neglecting subsidence and eroded material| [13] |-| Soufrière Hills| 0.17km3/kyr| Last 174 ka| Total volume/Duration| |-| Stromboli| 10km3/kyr20km3/kyr| | Magma intrusion needed to create the measured sulfur dioxide emissions.| [36] |-| Tancítaro| ≤0.19km3/kyr| ≥ 550 ka| Total volume/Duration| [37] |-| Tenerife| 0.3km3/kyr| Long term average| Total volume/Duration| [38] |-| Tenerife, Old Basaltic Series| 0.25km3/kyr0.5km3/kyr| 8-4 million years ago| Estimated volume/Duration| [38] |-| Tenerife, Cañadas I volcano| 0.4km3/kyr| 1 million years| Estimated volume/Duration| [38] |-| Tenerife, Cañadas II volcano| 0.2km3/kyr0.25km3/kyr| 0.8 million years| Estimated volume/Duration| [38] |-| Tenerife, Cordillera Dorsal| 1.5km3/kyr1.25km3/kyr| 0.2 million years| Estimated volume/Duration| [38] |-| Tenerife, Teide-Pico Viejo| 0.75km3/kyr| 0.2 million years| Estimated volume/Duration| [38] |-| Tunupa-Huayrana| 0.43km3/kyr0.93km3/kyr| 240,000–90,000 years| | [39] |-| Ubinas| 0.17km3/kyr0.22km3/kyr| < 376 ka| Cone volume/Duration| [37] [40] |-| Yellowstone| 2km3/kyr| Long term average| | [41] |}

Notes and References

  1. Janle. P.. Basilevsky. A.T.. Kreslavsky. M.A.. Slyuta. E.N.. Heat loss and tectonic style of Venus. Earth, Moon, and Planets. 1 July 1992. 58. 1. 1–29. 10.1007/BF00058070. English. 0167-9295. 1992EM&P...58....1J. 122135792.
  2. Book: Scholl. David W.. Huene. Roland von. Crustal recycling at modern subduction zones applied to the past—Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. GeoScienceWorld. 200. January 2007. 9–32. 10.1130/2007.1200(02). en. Geological Society of America Memoirs. 978-0-8137-1200-0.
  3. Paterson. Scott R.. Okaya. David. Memeti. Valbone. Economos. Rita. Miller. Robert B.. 2011-12-01. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: Combined field, geochronologic, and thermal modeling studies. Geosphere. en. 7. 6. 1439–1468. 10.1130/GES00696.1. 2011Geosp...7.1439P. free.
  4. Crisp. Joy A.. Rates of magma emplacement and volcanic output. Journal of Volcanology and Geothermal Research. April 1984. 20. 3–4. 177–211. 10.1016/0377-0273(84)90039-8. 0377-0273. 1984JVGR...20..177C.
  5. D'Alessandro. W.. Brusca. L.. Kyriakopoulos. K.. Michas. G.. Papadakis. G.. Methana, the westernmost active volcanic system of the south Aegean arc (Greece): Insight from fluids geochemistry. Journal of Volcanology and Geothermal Research. December 2008. 178. 4. 820. 10.1016/j.jvolgeores.2008.09.014. 0377-0273. 2008JVGR..178..818D.
  6. de Silva. Shanaka L.. Gosnold. William D.. Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up. Journal of Volcanology and Geothermal Research. November 2007. 167. 1–4. 320–335. 10.1016/j.jvolgeores.2007.07.015. 2007JVGR..167..320D.
  7. Soto. Gerardo J.. Alvarado. Guillermo E.. Eruptive history of Arenal Volcano, Costa Rica, 7 ka to present. Journal of Volcanology and Geothermal Research. September 2006. 157. 1–3. 254–269. 10.1016/j.jvolgeores.2006.03.041. 0377-0273. 10.1.1.495.2449. 2006JVGR..157..254S.
  8. Klemetti. Erik W.. Grunder. Anita L.. Anita Grunder. Volcanic evolution of Volcán Aucanquilcha: a long-lived dacite volcano in the Central Andes of northern Chile. Bulletin of Volcanology. 24 July 2007. 70. 5. 633–650. 10.1007/s00445-007-0158-x. 2008BVol...70..633K. 140668081.
  9. Kerr. Andrew C.. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary?. Journal of the Geological Society. 1 August 1998. 155. 4. 619–626. 10.1144/gsjgs.155.4.0619. en. 0016-7649. 1998JGSoc.155..619K. 129178854.
  10. Royo-Ochoa. M.. Alva-Valdivia. L. M.. Fucugauchi. J. Urrutia. Chavez-Aguirre. R.. Goguitchaichvili. A.. Solé. J.. Rivas. M. L.. Magnetic Polarity Stratigraphy and K-Ar Dating in the Camargo Volcanic Field, Northern Mexico: Lateral SW-NE Migration of Volcanic Activity. International Geology Review. 1 June 2004. 46. 6. 558–573. 10.2747/0020-6814.46.6.558. 0020-6814. 2004IGRv...46..558R. 131356343.
  11. Stix. John. Gorton. Michael P.. Variations in trace element partition coefficients in sanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico: Effects of composition, temperature, and volatiles. Geochimica et Cosmochimica Acta. October 1990. 54. 10. 2697–2708. 10.1016/0016-7037(90)90005-6. 0016-7037. 1990GeCoA..54.2697S.
  12. Samaniego. Pablo. Barba. Diego. Robin. Claude. Fornari. Michel. Bernard. Benjamin. Eruptive history of Chimborazo volcano (Ecuador): A large, ice-capped and hazardous compound volcano in the Northern Andes. Journal of Volcanology and Geothermal Research. April 2012. 221–222. 33–51. 10.1016/j.jvolgeores.2012.01.014. 0377-0273. 2012JVGR..221...33S.
  13. Staudigel. Hubert. Park. K.-H.. Pringle. M.. Rubenstone. J.L.. Smith. W.H.F.. Zindler. A.. The longevity of the South Pacific isotopic and thermal anomaly. Earth and Planetary Science Letters. January 1991. 102. 1. 24–44. 10.1016/0012-821X(91)90015-A. 0012-821X. 1991E&PSL.102...24S. free.
  14. Layer. P. W.. García-Palomo. A.. Jones. D.. Macías. J. L.. Arce. J. L.. Mora. J. C.. El Chichón volcanic complex, Chiapas, México: Stages of evolution based on field mapping and 40Ar/39Ar geochronology. Geofísica Internacional. March 2009. 48. 1. 33–54. 10.22201/igeof.00167169p.2009.48.1.98 . 0016-7169. free.
  15. Harpel. Christopher J.. de Silva. Shanaka. Salas. Guido. The 2 ka Eruption of Misti Volcano, Southern Peru—The Most Recent Plinian Eruption of Arequipa's Iconic Volcano. GSA Special Papers. 26 May 2011. 484. 5. 26 November 2015.
  16. Carracedo. J. C.. Day. S.. Guillou. H.. Badiola. E. Rodríguez. Canas. J. A.. Torrado. F. J. Pérez. Hotspot volcanism close to a passive continental margin: the Canary Islands. Geological Magazine. 1998. 135. 5. 591–604. 1469-5081. 10.1017/s0016756898001447. 1998GeoM..135..591C. 128483385 .
  17. Halter. Werner E. Bain. Nicolas. Becker. Katja. Heinrich. Christoph A. Landtwing. Marianne. VonQuadt. Albrecht. Clark. Alan H. Sasso. Anne M. Bissig. Thomas. Tosdal. Richard M. From andesitic volcanism to the formation of a porphyry Cu-Au mineralizing magma chamber: the Farallón Negro Volcanic Complex, northwestern Argentina. Journal of Volcanology and Geothermal Research. August 2004. 136. 1–2. 1–30. 10.1016/j.jvolgeores.2004.03.007. 2004JVGR..136....1H.
  18. Robinson. Joel E.. Eakins. Barry W.. Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge. Journal of Volcanology and Geothermal Research. March 2006. 151. 1–3. 309–317. 10.1016/j.jvolgeores.2005.07.033. 0377-0273. 2006JVGR..151..309R.
  19. Le Pennec. J.L.. Ruiz. A.G.. Eissen. J.P.. Hall. M.L.. Fornari. M.. Identifying potentially active volcanoes in the Andes: Radiometric evidence for late Pleistocene-early Holocene eruptions at Volcán Imbabura, Ecuador. Journal of Volcanology and Geothermal Research. September 2011. 206. 3–4. 121–135. 10.1016/j.jvolgeores.2011.06.002. 0377-0273. 2011JVGR..206..121L.
  20. Auer. Sara. Bindeman. Ilya. Wallace. Paul. Ponomareva. Vera. Portnyagin. Maxim. The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contributions to Mineralogy and Petrology. 6 August 2008. 157. 2. 209–230. 10.1007/s00410-008-0330-0. 43098190.
  21. Franz. Gerhard. Breitkreuz. Christoph. Coyle. David A.. El Hur. Bushra. Heinrich. Wilhelm. Paulick. Holger. Pudlo. Dieter. Smith. Robyn. Steiner. Gesine. The alkaline Meidob volcanic field (Late Cenozoic, northwest Sudan). Journal of African Earth Sciences. August 1997. 25. 2. 263–291. 10.1016/S0899-5362(97)00103-6. 1464-343X. 1997JAfES..25..263F.
  22. Leat. P. T.. Geological evolution of the trachytic caldera volcano Menengai, Kenya Rift Valley. Journal of the Geological Society. 1 November 1984. 141. 6. 1057–1069. 10.1144/gsjgs.141.6.1057. en. 0016-7649. 1984JGSoc.141.1057L. 129702105.
  23. Germa. Aurélie. Quidelleur. Xavier. Labanieh. Shasa. Lahitte. Pierre. Chauvel. Catherine. Catherine Chauvel. The eruptive history of Morne Jacob volcano (Martinique Island, French West Indies): Geochronology, geomorphology and geochemistry of the earliest volcanism in the recent Lesser Antilles arc. Journal of Volcanology and Geothermal Research. December 2010. 198. 3–4. 297–310. 10.1016/j.jvolgeores.2010.09.013. 2010JVGR..198..297G.
  24. Hildreth. Wes. Fierstein. Judy. Recent eruptions of Mount Adams, Washington Cascades, USA. Bulletin of Volcanology. 1 April 1997. 58. 6. 472–490. 10.1007/s004450050156. en. 0258-8900. 1997BVol...58..472H. 129487879.
  25. Branca. Stefano. Ferrara. Vincenzo. The morphostructural setting of Mount Etna sedimentary basement (Italy): Implications for the geometry and volume of the volcano and its flank instability. Tectonophysics. February 2013. 586. 46–64. 10.1016/j.tecto.2012.11.011. 0040-1951. 2013Tectp.586...46B.
  26. D'Alessandro. W.. Giammanco. S.. Parello. F.. Valenza. M.. CO2 output and δ13C(CO2) from Mount Etna as indicators of degassing of shallow asthenosphere. Bulletin of Volcanology. 1 April 1997. 58. 6. 455–458. 10.1007/s004450050154. 1997BVol...58..455D. 129640540. en. 0258-8900.
  27. Germa. Aurelie. Lahitte. Pierre. Quidelleur. Xavier. Construction and destruction of Mont Pelée volcano: Volumes and rates constrained from a geomorphological model of evolution. Journal of Geophysical Research: Earth Surface. July 2015. 120. 7. 1206–1226. 10.1002/2014JF003355. 2015JGRF..120.1206G. 129899404 . free.
  28. Panter. K.S.. McIntosh. W.C.. Smellie. J.L.. Volcanic history of Mount Sidley, a major alkaline volcano in Marie Byrd Land, Antarctica. Bulletin of Volcanology. 1 November 1994. 56. 5. 361–376. 10.1007/BF00326462. English. 0258-8900. 1994BVol...56..361P. 140586519.
  29. Web site: Gardeweg. M.C.. Clavero. J.. Mpodozis. C.. Perez de A.. C.. Villeneuve. M.. Constantino Mpodozis. El Macizo Tres Cruces: Un Complejo Volcanico Longevo Y Potencialmente Activo En La Alta Cordillera De Copiapo, Chile. biblioserver.sernageomin.cl. Servicio Nacional de Geología y Minería. 22 November 2015. https://web.archive.org/web/20151122131653/http://biblioserver.sernageomin.cl/opac/DataFiles/10072v2pp291_295.pdf. 22 November 2015. Puerto Varas. es. 4 August 2000. 295.
  30. Clavero R.. Jorge E.. Sparks. Stephen J.. Polanco. Edmundo. Pringle. Malcolm S.. Evolution of Parinacota volcano, Central Andes, Northern Chile. Revista Geológica de Chile. December 2004. 31. 2. 10.4067/S0716-02082004000200009. free.
  31. Jicha. Brian R.. Laabs. Benjamin J.C.. Hora. John M.. Singer. Brad S.. Caffee. Marc W.. Early Holocene collapse of Volcán Parinacota, central Andes, Chile: Volcanological and paleohydrological consequences. Geological Society of America Bulletin. November 2015. 127. 11–12. 1681–1688. 10.1130/B31247.1. 2015GSAB..127.1681J.
  32. Gamble. John A.. Price. Richard C.. Smith. Ian E.M.. McIntosh. William C.. Dunbar. Nelia W.. 40Ar/39Ar geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research. February 2003. 120. 3–4. 271–287. 10.1016/S0377-0273(02)00407-9. 2003JVGR..120..271G. 0377-0273.
  33. Karátson. Dávid. Telbisz. Tamás. Singer. Brad S.. Late-stage volcano geomorphic evolution of the Pleistocene San Francisco Mountain, Arizona (USA), based on high-resolution DEM analysis and 40Ar/39Ar chronology. Bulletin of Volcanology. 1 May 2010. 72. 7. 833–846. 10.1007/s00445-010-0365-8. 2010BVol...72..833K. free. 10831/91180. free.
  34. Singer. B. S.. Thompson. R. A.. Dungan. M. A.. Feeley. T. C.. Nelson. S. T.. Pickens. J. C.. Brown. L. L.. Wulff. A. W.. Davidson. J. P.. Metzger. J.. Volcanism and erosion during the past 930 k.y. at the Tatara–San Pedro complex, Chilean Andes. Geological Society of America Bulletin. February 1997. 109. 2. 127–142. 10.1130/0016-7606(1997)109<0127:VAEDTP>2.3.CO;2. 1997GSAB..109..127S.
  35. Escobar-Wolf. R. P.. Diehl. J. F.. Singer. B. S.. Rose. W. I.. 40Ar/39Ar and paleomagnetic constraints on the evolution of Volcan de Santa Maria, Guatemala. Geological Society of America Bulletin. 30 December 2009. 122. 5–6. 757–771. 10.1130/B26569.1.
  36. Allard. P.. Carbonnelle. J.. Métrich. N.. Loyer. H.. Zettwoog. P.. Sulphur output and magma degassing budget of Stromboli volcano. Nature. 1994. 368. 6469. 326–330. 10.1038/368326a0. En. 1476-4687. 1994Natur.368..326A. 4241099.
  37. Ownby. S. E.. Lange. R. A.. Rebecca Lange. Hall. C. M.. Delgado-Granados. H.. Origin of andesite in the deep crust and eruption rates in the Tancitaro-Nueva Italia region of the central Mexican arc. Geological Society of America Bulletin. 8 October 2010. 123. 1–2. 274–294. 10.1130/B30124.1.
  38. Ancochea. Eumenio. Fuster. JoséMaría. Ibarrola. Elisa. Cendrero. Antonio. Coello. Juan. Hernan. Francisco. Cantagrel. Jean M.. Jamond. Colette. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. Journal of Volcanology and Geothermal Research. December 1990. 44. 3–4. 231–249. 10.1016/0377-0273(90)90019-C. 0377-0273. 1990JVGR...44..231A.
  39. Web site: J.. Salisbury, Morgan. Convergent margin magmatism in the central Andes and its near antipodes in western Indonesia : spatiotemporal and geochemical considerations. ir.library.oregonstate.edu. Oregon State University. 8 January 2016. en-US.
  40. Thouret. Jean-Claude. Rivera. Marco. Wörner. Gerhard. Gerbe. Marie-Christine. Finizola. Anthony. Fornari. Michel. Gonzales. Katherine. Ubinas: the evolution of the historically most active volcano in southern Peru. Bulletin of Volcanology. 21 April 2005. 67. 6. 557–589. 10.1007/s00445-004-0396-0. 2005BVol...67..557T. 129294486.
  41. Rivera. Tiffany A.. Schmitz. Mark D.. Jicha. Brian R.. Crowley. James L.. Zircon Petrochronology and40Ar/39Ar Sanidine Dates for the Mesa Falls Tuff: Crystal-scale Records of Magmatic Evolution and the Short Lifespan of a Large Yellowstone Magma Chamber. Journal of Petrology. 1 September 2016. 57. 9. egw053. 10.1093/petrology/egw053. en. 0022-3530. free.