In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph. A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges. In contrast to the shortest path problem, which can be solved in polynomial time in graphs without negative-weight cycles, the longest path problem is NP-hard and the decision version of the problem, which asks whether a path exists of at least some given length, is NP-complete. This means that the decision problem cannot be solved in polynomial time for arbitrary graphs unless P = NP. Stronger hardness results are also known showing that it is difficult to approximate. However, it has a linear time solution for directed acyclic graphs, which has important applications in finding the critical path in scheduling problems.
The NP-hardness of the unweighted longest path problem can be shown using a reduction from the Hamiltonian path problem: a graph G has a Hamiltonian path if and only if its longest path has length n − 1, where n is the number of vertices in G. Because the Hamiltonian path problem is NP-complete, this reduction shows that the decision version of the longest path problem is also NP-complete. In this decision problem, the input is a graph G and a number k; the desired output is yes if G contains a path of k or more edges, and no otherwise.[1]
If the longest path problem could be solved in polynomial time, it could be used to solve this decision problem, by finding a longest path and then comparing its length to the number k. Therefore, the longest path problem is NP-hard. The question "does there exist a simple path in a given graph with at least k edges" is NP-complete.[2]
In weighted complete graphs with non-negative edge weights, the weighted longest path problem is the same as the Travelling salesman path problem, because the longest path always includes all vertices.[3]
A longest path between two given vertices s and t in a weighted graph G is the same thing as a shortest path in a graph −G derived from G by changing every weight to its negation. Therefore, if shortest paths can be found in −G, then longest paths can also be found in G.
For most graphs, this transformation is not useful because it creates cycles of negative length in −G. But if G is a directed acyclic graph (DAG), then no negative cycles can be created, and a longest path in G can be found in linear time by applying a linear time algorithm for shortest paths in −G, which is also a directed acyclic graph.[4] For a DAG, the longest path from a source vertex to all other vertices can be obtained by running the shortest-path algorithm on −G.
Similarly, for each vertex v in a given DAG, the length of the longest path ending at v may be obtained by the following steps:
Once this has been done, the longest path in the whole DAG may be obtained by starting at the vertex v with the largest recorded value, then repeatedly stepping backwards to its incoming neighbor with the largest recorded value, and reversing the sequence of vertices found in this way.
This is equivalent to running the shortest-path algorithm on −G.
The critical path method for scheduling a set of activities involves the construction of a directed acyclic graph in which the vertices represent project milestones and the edges represent activities that must be performed after one milestone and before another; each edge is weighted by an estimate of the amount of time the corresponding activity will take to complete. In such a graph, the longest path from the first milestone to the last one is the critical path, which describes the total time for completing the project.[4]
Longest paths of directed acyclic graphs may also be applied in layered graph drawing: assigning each vertex v of a directed acyclic graph G to the layer whose number is the length of the longest path ending at v results in a layer assignment for G with the minimum possible number of layers.[5]
write that the longest path problem in unweighted undirected graphs "is notorious for the difficulty of understanding its approximation hardness".[6] The best polynomial time approximation algorithm known for this case achieves only a very weak approximation ratio,
n/\exp(\Omega(\sqrt{logn}))
\epsilon>0
(logn)1-\epsilon | |
2 |
In the case of unweighted but directed graphs, strong inapproximability results are known. For every
\epsilon>0
n1-\epsilon
n/log2+\epsilonn
O(n/logn)
The longest path problem is fixed-parameter tractable when parameterized by the length of the path. For instance, it can be solved in time linear in the size of the input graph (but exponential in the length of the path), by an algorithm that performs the following steps:
d
d
O(d!2dn)
n
d
O(\ell!2\elln)
\ell
For graphs of bounded clique-width, the longest path can also be solved by a polynomial time dynamic programming algorithm. However, the exponent of the polynomial depends on the clique-width of the graph, so this algorithms is not fixed-parameter tractable. The longest path problem, parameterized by clique-width, is hard for the parameterized complexity class
W[1]
A linear-time algorithm for finding a longest path in a tree was proposed by Edsger Dijkstra around 1960, while a formal proof of this algorithm was published in 2002.[15] Furthermore, a longest path can be computed in polynomial time on weighted trees, on block graphs, on cacti,[16] on bipartite permutation graphs,[17] and on Ptolemaic graphs.[18]
For the class of interval graphs, an
O(n4)
O(n4)
O(n7)
Furthermore, the longest path problem is solvable in polynomial time on any class of graphs with bounded treewidth or bounded clique-width, such as the distance-hereditary graphs. Finally, it is clearly NP-hard on all graph classes on which the Hamiltonian path problem is NP-hard, such as on split graphs, circle graphs, and planar graphs.
A simple model of a directed acyclic graph is the Price model, developed by Derek J. de Solla Price to represent citation networks. This is simple enough to allow for analytic results to be found for some properties. For instance,the length of the longest path, from the n-th node added to the network to the first node in the network, scales as
ln(n)