In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, a local martingale is not in general a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale.
Local martingales are essential in stochastic analysis (see Itô calculus, semimartingale, and Girsanov theorem).
Let
(\Omega,F,P)
F*=\{Ft\midt\geq0\}
F
X\colon[0,infty) x \Omega → S
F*
S
X
F*
F*
\tauk\colon\Omega\to[0,infty)
\tauk
P\left\{\tauk<\tauk+1\right\}=1
\tauk
P\left\{\limk\toinfty\tauk=infty\right\}=1
F*
k
Let Wt be the Wiener process and T = min the time of first hit of -1. The stopped process Wmin is a martingale. Its expectation is 0 at all times; nevertheless, its limit (as t → ∞) is equal to -1 almost surely (a kind of gambler's ruin). A time change leads to a process
\displaystyleXt=\begin{cases} Wmin\left(\tfrac{t{1-t},T\right)}&for0\let<1,\\ -1&for1\let<infty. \end{cases}
The process
Xt
\displaystyle\operatorname{E}Xt=\begin{cases} 0&for0\let<1,\\ -1&for1\let<infty. \end{cases}
This process is not a martingale. However, it is a local martingale. A localizing sequence may be chosen as
\tauk=min\{t:Xt=k\}
\tauk=k
\tauk=k
Let Wt be the Wiener process and ƒ a measurable function such that
\operatorname{E}|f(W1)|<infty.
Xt=\operatorname{E}(f(W1)\midFt)=\begin{cases} f1-t(Wt)&for0\let<1,\\ f(W1)&for1\let<infty; \end{cases}
fs(x)=\operatorname{E}f(x+Ws)=\intf(x+y)
1{\sqrt{2\pi | |
s}} |
-y2/(2s) | |
e |
dy.
\delta
f,
Yt=\operatorname{E}(\delta(W1)\midFt)
Yt=\begin{cases} \delta1-t(Wt)&for0\let<1,\\ 0&for1\let<infty, \end{cases}
\deltas(x)=
1{\sqrt{2\pi | |
s}} |
-x2/(2s) | |
e |
.
Yt
W1\ne0
\operatorname{E}Yt=\begin{cases} 1/\sqrt{2\pi}&for0\let<1,\\ 0&for1\let<infty. \end{cases}
\tauk=min\{t:Yt=k\}.
Let
Zt
Xt=ln|Zt-1|.
Xt
Zt
u\mapstoln|u-1|
\tauk=min\{t:Xt=-k\}.
\operatorname{E}Xt\toinfty
t\toinfty,
ln|u-1|
|u|=r
r\toinfty
lnr
Let
Mt
\tauk | |
M | |
t |
\toMt
k\toinfty
\operatorname{E}|
\tauk | |
M | |
t |
-Mt|\to0;
\tauk | |
M | |
t |
=
M | |
t\wedge\tauk |
\tauk\toinfty
\tauk | |
M | |
t |
\toMt
style(*) \operatorname{E}\supk|
\tauk | |
M | |
t |
|<infty
Mt
style(**) \operatorname{E}\sups\in[0,t]|Ms|<infty
Caution. The weaker condition
style\sups\in[0,t]\operatorname{E}|Ms|<infty
style\supt\in[0,infty)\operatorname{E}
|Mt| | |
e |
<infty
A special case:
styleMt=f(t,Wt),
Wt
f:[0,infty) x R\toR
Mt
(
\partial | |
\partialt |
+
12 | |||
|
)f(t,x)=0.
Mt
\varepsilon>0
C=C(\varepsilon,t)
style|f(s,x)|\leC
\varepsilonx2 | |
e |
s\in[0,t]
x\inR.
. Bernt Øksendal . Stochastic Differential Equations: An Introduction with Applications . Sixth . Springer . Berlin . 2003 . 3-540-04758-1.