Natural logarithm of 2 explained

The decimal value of the natural logarithm of 2 is approximately

ln20.693147180559945309417232121458.

The logarithm of 2 in other bases is obtained with the formula

logb2=

ln2
lnb

.

The common logarithm in particular is

log1020.301029995663981195.

The inverse of this number is the binary logarithm of 10:

log210=

1
log102

3.321928095

.

By the Lindemann–Weierstrass theorem, the natural logarithm of any natural number other than 0 and 1 (more generally, of any positive algebraic number other than 1) is a transcendental number.

Series representations

Rising alternate factorial

ln2=

infty
\sum
n=1
(-1)n+1=1-
n
12+
13-
14+
15-16+ … .
This is the well-known "alternating harmonic series".

ln2=

1+
2
1
2
infty
\sum
n=1
(-1)n+1
n(n+1)

.

ln2=

5+
8
1
2
infty
\sum
n=1
(-1)n+1
n(n+1)(n+2)

.

ln2=

2+
3
3
4
infty
\sum
n=1
(-1)n+1
n(n+1)(n+2)(n+3)

.

ln2=

131+
192
3
2
infty
\sum
n=1
(-1)n+1
n(n+1)(n+2)(n+3)(n+4)

.

ln2=

661+
960
15
4
infty
\sum
n=1
(-1)n+1
n(n+1)(n+2)(n+3)(n+4)(n+5)

.

ln2=

2.(1+
3
2+
43-4
2+
83-8
2
123-12

+.........).

Binary rising constant factorial

ln2=

infty
\sum
n=1
1
2nn

.

ln2=1

infty
-\sum
n=1
1
2nn(n+1)

.

ln2=

1
2

+2

infty
\sum
n=1
1
2nn(n+1)(n+2)

.

ln2=

5
6

-6

infty
\sum
n=1
1
2nn(n+1)(n+2)(n+3)

.

ln2=

7
12

+24

infty
\sum
n=1
1
2nn(n+1)(n+2)(n+3)(n+4)

.

ln2=

47
60

-120

infty
\sum
n=1
1
2nn(n+1)(n+2)(n+3)(n+4)(n+5)

.

Other series representations

infty
\sum
n=0
1
(2n+1)(2n+2)

=ln2.

infty
\sum
n=1
1
n(4n2-1)

=2ln2-1.

infty
\sum
n=1
(-1)n
n(4n2-1)

=ln2-1.

infty
\sum
n=1
(-1)n
n(9n2-1)

=2ln2-

3
2

.

infty
\sum
n=1
1
4n2-2n

=ln2.

infty
\sum
n=1
2(-1)n+1(2n-1)+1
8n2-4n

=ln2.

infty
\sum
n=0
(-1)n
3n+1

=

ln2+
3
\pi
3\sqrt{3
}.
infty
\sum
n=0
(-1)n
3n+2

=-

ln2+
3
\pi
3\sqrt{3
}.
infty
\sum
n=0
(-1)n
(3n+1)(3n+2)

=

2ln2
3

.

infty
\sum
n=1
1
n
\sumk2
k=1

=18-24ln2

using

\limN

2N
\sum
n=N
1
n

=ln2

infty
\sum
n=1
1
4n2-3n

=ln2+

\pi
6

(sums of the reciprocals of decagonal numbers)

Involving the Riemann Zeta function

infty
\sum
n=1
1
n

[\zeta(2n)-1]=ln2.

infty
\sum
n=2
1
2n

[\zeta(n)-1]=ln2-

1
2

.

infty
\sum
n=1
1
2n+1

[\zeta(2n+1)-1]=1-\gamma-

ln2
2

.

infty
\sum
n=1
1
22n-1(2n+1)

\zeta(2n)=1-ln2.

(is the Euler–Mascheroni constant and Riemann's zeta function.)

BBP-type representations

ln2=

2
3

+

1
2
infty
\sum\left(
k=1
1+
2k
1+
4k+1
1+
8k+4
1
16k+12

\right)

1
16k

.

(See more about Bailey–Borwein–Plouffe (BBP)-type representations.)

Applying the three general series for natural logarithm to 2 directly gives:

ln2=

infty
\sum
n=1
(-1)n-1
n

.

ln2=

infty
\sum
n=1
1
2nn

.

ln2=

2
3
infty
\sum
k=0
1
9k(2k+1)

.

Applying them to

style2=

3
2

4
3

gives:

ln2=

infty
\sum
n=1
(-1)n-1
2nn

+

infty
\sum
n=1
(-1)n-1
3nn

.

ln2=

infty
\sum
n=1
1
3nn

+

infty
\sum
n=1
1
4nn

.

ln2=

2
5
infty
\sum
k=0
1
25k(2k+1)

+

2
7
infty
\sum
k=0
1
49k(2k+1)

.

Applying them to

style2=(\sqrt{2})2

gives:

ln2=2

infty
\sum
n=1
(-1)n-1
(\sqrt{2

+1)nn}.

ln2=2

infty
\sum
n=1
1
(2+\sqrt{2

)nn}.

ln2=

4
3+2\sqrt{2
} \sum_^\infty \frac .

Applying them to

style2={\left(

16
15

\right)}7{\left(

81
80

\right)}3{\left(

25
24

\right)}5

gives:

ln2=7

infty
\sum
n=1
(-1)n-1
15nn

+3

infty
\sum
n=1
(-1)n-1
80nn

+5

infty
\sum
n=1
(-1)n-1
24nn

.

ln2=7

infty
\sum
n=1
1
16nn

+3

infty
\sum
n=1
1
81nn

+5

infty
\sum
n=1
1
25nn

.

ln2=

14
31
infty
\sum
k=0
1
961k(2k+1)

+

6
161
infty
\sum
k=0
1
25921k(2k+1)

+

10
49
infty
\sum
k=0
1
2401k(2k+1)

.

Representation as integrals

The natural logarithm of 2 occurs frequently as the result of integration. Some explicit formulas for it include:

1
\int
0
dx
1+x

=

2
\int
1
dx
x

=ln2

infty
\int
0

e-x

1-e-x
x

dx=ln2

infty
\int
0

2-xdx=

1
ln2
\pi
3
\int
0

\tanx

\pi
4
dx=2\int
0

\tanxdx=ln2

-1
\pii
infty
\int
0
lnxlnlnx
(x+1)2

dx=ln2

Other representations

The Pierce expansion is

ln2=1-

1+
1 ⋅ 3
1
1 ⋅ 3 ⋅ 12

- … .

The Engel expansion is

ln2=

1
2

+

1
2 ⋅ 3

+

1
2 ⋅ 3 ⋅ 7

+

1
2 ⋅ 3 ⋅ 7 ⋅ 9

+ … .

The cotangent expansion is

ln2=\cot({\arccot(0)-\arccot(1)+\arccot(5)-\arccot(55)+\arccot(14187)- … }).

The simple continued fraction expansion is

ln2=\left[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,1,1,3,2,3,1,...\right]

,which yields rational approximations, the first few of which are 0, 1, 2/3, 7/10, 9/13 and 61/88.

This generalized continued fraction:

ln2=\left[0;1,2,3,1,5,\tfrac{2}{3},7,\tfrac{1}{2},9,\tfrac{2}{5},...,2k-1,

2
k

,...\right]

,[1]

also expressible as

ln2=\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{3+\cfrac{2}{2+\cfrac{2}{5+\cfrac{3}{2+\cfrac{3}{7+\cfrac{4}{2+\ddots}}}}}}}} =\cfrac{2}{3-\cfrac{12}{9-\cfrac{22}{15-\cfrac{32}{21-\ddots}}}}

Bootstrapping other logarithms

Given a value of, a scheme of computing the logarithms of other integers is to tabulate the logarithms of the prime numbers and in the next layer the logarithms of the composite numbers based on their factorizations

c=2i3j5k7l … → ln(c)=iln(2)+jln(3)+kln(5)+lln(7)+ …

This employs

In a third layer, the logarithms of rational numbers are computed with, and logarithms of roots via .

The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers close to powers of other numbers is comparatively easy, and series representations of are found by coupling 2 to with logarithmic conversions.

Example

If with some small, then and therefore

slnp-tlnq=ln\left(1+

d
qt

\right)=

infty
\sum
m=1

(-1)m+1

(d)m
qt
m

=

infty
\sum
n=0
2{\left(
2n+1
d
2qt+d

\right)}2n+1.

Selecting represents by and a series of a parameter that one wishes to keep small for quick convergence. Taking, for example, generates

2ln3=3ln2-\sumk\ge

(-1)k
8kk

=3ln2+

infty
\sum
n=0
2{\left(
2n+1
1
2 ⋅ 8+1

\right)}2n+1.

This is actually the third line in the following table of expansions of this type:
1 3 1 2 = …
1 3 2 2 − = −…
2 3 3 2 = …
5 3 8 2 − = −…
12 3 19 2 = …
1 5 2 2 = …
3 5 7 2 − = −…
1 7 2 2 = …
1 7 3 2 − = −…
5 7 14 2 = …
1 11 3 2 = …
2 11 7 2 − = −…
11 11 38 2 = …
1 13 3 2 = …
1 13 4 2 − = −…
3 13 11 2 = …
7 13 26 2 − = −…
10 13 37 2 = …
1 17 4 2 = …
1 19 4 2 = …
4 19 17 2 − = −…
1 23 4 2 = …
1 23 5 2 − = −…
2 23 9 2 = …
1 29 4 2 = …
1 29 5 2 − = −…
7 29 34 2 = …
1 31 5 2 − = −…
1 37 5 2 = …
4 37 21 2 − = −…
5 37 26 2 = …
1 41 5 2 = …
2 41 11 2 − = −…
3 41 16 2 = …
1 43 5 2 = …
2 43 11 2 − = −…
5 43 27 2 = …
7 43 38 2 − = −…

Starting from the natural logarithm of one might use these parameters:

10 2 3 10 = …
21 3 10 10 = …
3 5 2 10 = …
10 5 7 10 − = −…
6 7 5 10 = …
13 7 11 10 − = −…
1 11 1 10 = …
1 13 1 10 = …
8 13 9 10 − = −…
9 13 10 10 = …
1 17 1 10 = …
4 17 5 10 − = −…
9 17 11 10 = …
3 19 4 10 − = −…
4 19 5 10 = …
7 19 9 10 − = −…
2 23 3 10 − = −…
3 23 4 10 = …
2 29 3 10 − = −…
2 31 3 10 − = −…

Known digits

This is a table of recent records in calculating digits of . As of December 2018, it has been calculated to more digits than any other natural logarithm[2] [3] of a natural number, except that of 1.

Date Name Number of digits
January 7, 2009 A.Yee & R.Chan 15,500,000,000
February 4, 2009 A.Yee & R.Chan 31,026,000,000
February 21, 2011 Alexander Yee 50,000,000,050
May 14, 2011 Shigeru Kondo 100,000,000,000
February 28, 2014 Shigeru Kondo 200,000,000,050
July 12, 2015 Ron Watkins 250,000,000,000
January 30, 2016 Ron Watkins 350,000,000,000
April 18, 2016 Ron Watkins 500,000,000,000
December 10, 2018 Michael Kwok 600,000,000,000
April 26, 2019 Jacob Riffee 1,000,000,000,000
August 19, 2020 Seungmin Kim[4] [5] 1,200,000,000,100
September 9, 2021 William Echols[6] [7] 1,500,000,000,000

See also

all solutions must come from a convergent of .

References

External links

Notes and References

  1. 2004. 13. J. . Borwein. R. . Crandall. G. . Free. Exper. Math. . On the Ramanujan AGM Fraction, I: The Real-Parameter Case. 3 . 278–280. 10.1080/10586458.2004.10504540. 17758274.
  2. Web site: y-cruncher. numberworld.org. 10 December 2018.
  3. Web site: Natural log of 2. numberworld.org. 10 December 2018.
  4. Web site: Records set by y-cruncher. https://web.archive.org/web/20200915070251/http://www.numberworld.org/y-cruncher/. September 15, 2020. 2020-09-15.
  5. Web site: Natural logarithm of 2 (Log(2)) world record by Seungmin Kim. 19 August 2020. September 15, 2020.
  6. Web site: Records set by y-cruncher. October 26, 2021.
  7. Web site: Natural Log of 2 - William Echols. October 26, 2021.