List of undecidable problems explained

In computability theory, an undecidable problem is a decision problem for which an effective method (algorithm) to derive the correct answer does not exist. More formally, an undecidable problem is a problem whose language is not a recursive set; see the article Decidable language. There are uncountably many undecidable problems, so the list below is necessarily incomplete. Though undecidable languages are not recursive languages, they may be subsets of Turing recognizable languages: i.e., such undecidable languages may be recursively enumerable.

Many, if not most, undecidable problems in mathematics can be posed as word problems: determining when two distinct strings of symbols (encoding some mathematical concept or object) represent the same object or not.

For undecidability in axiomatic mathematics, see List of statements undecidable in ZFC.

Problems in logic

Problems about abstract machines

Problems about matrices

Problems in combinatorial group theory

Problems in topology

See main article: Simplicial complex recognition problem.

Problems in analysis

dx
dt

=p(t,x),~x(t0)=x0,

where x is a vector in Rn, p(t, x) is a vector of polynomials in t and x, and (t0, x0) belongs to Rn+1.[6]

Problems about formal languages and grammars

Other problems

See also

Bibliography

Further reading

Notes and References

  1. J. B. . Wells . Typability and type checking in the second-order lambda-calculus are equivalent and undecidable . 10.1.1.31.3590 . Tech. Rep. 93-011 . Comput. Sci. Dept., Boston Univ. . 1993 . 176–185 .
  2. Trahtenbrot . B. A. . Boris Trakhtenbrot . Doklady Akademii Nauk SSSR . New Series . 0033784 . 569–572 . The impossibility of an algorithm for the decision problem for finite domains . 70 . 1950.
  3. .
  4. Keith O. Geddes, Stephen R. Czapor, George Labahn, Algorithms for Computer Algebra,, 2007, p. 81ff
  5. Stallworth . Daniel T.. Roush . Fred W.. An Undecidable Property of Definite Integrals. Proceedings of the American Mathematical Society. 125. 7. July 1997. 2147–2148. 10.1090/S0002-9939-97-03822-7 . free.
  6. Graça. Daniel S.. Buescu. Jorge. Campagnolo. Manuel L.. 21 March 2008. Boundedness of the Domain of Definition is Undecidable for Polynomial ODEs. Electronic Notes in Theoretical Computer Science. 202. 49–57. 10.1016/j.entcs.2008.03.007. free. 10400.1/1016. free.
  7. .
  8. 10.1038/nature16059. 26659181. Undecidability of the spectral gap. Nature. 528. 7581. 207–211. 2015. Cubitt. Toby S.. Perez-Garcia. David. Wolf. Michael M.. 2015Natur.528..207C. 1502.04135. 4451987.
  9. Bausch . Johannes . Cubitt . Toby S. . Lucia . Angelo . Perez-Garcia . David . Undecidability of the Spectral Gap in One Dimension . . 17 August 2020 . 10 . 3 . 031038 . 10.1103/PhysRevX.10.031038 . 2020PhRvX..10c1038B . free . 1810.01858 .
  10. Elkouss. D.. Memory effects can make the transmission capability of a communication channel uncomputable. Pérez-García. D.. Nature Communications. 2018. 9. 1. 1149. 10.1038/s41467-018-03428-0. 29559615 . 5861076 . 2018NatCo...9.1149E .
  11. Li. C. T.. Undecidability of Network Coding, Conditional Information Inequalities, and Conditional Independence Implication. IEEE Transactions on Information Theory. 2023. 69 . 6 . 1 . 10.1109/TIT.2023.3247570. 2205.11461 . 248986512 .
  12. Kühne. L.. Representability of Matroids by c-Arrangements is Undecidable. Yashfe. G.. Israel Journal of Mathematics. 2022. 252 . 1-53. 10.1007/s11856-022-2345-z. 1912.06123 . 209324252 .
  13. Herrick. Austin. Biderman. Stella. Churchill. Alex. 2019-03-24. Magic: The Gathering is Turing Complete. cs.AI . 1904.09828v2. en.
  14. Web site: de Marcken . Carl . Computational Complexity of Air Travel Planning . . 4 January 2021.
  15. Web site: Computability and Complexity of Ray Tracing . CS.Duke.edu .
  16. Cardona. R.. Constructing Turing complete Euler flows in dimension 3. Miranda. E.. Peralta-Salas. D.. Presas. F.. Proceedings of the National Academy of Sciences. 2021. 118 . 19 . 19. 10.1073/pnas.2026818118. free . 33947820 . 8126859. 2012.12828 . 2021PNAS..11826818C .
  17. Cardona. R.. Computability and Beltrami fields in Euclidean space. Miranda. E.. Peralta-Salas. D.. Journal de Mathématiques Pures et Appliquées. 2023. 169 . 50-81. 10.1016/j.matpur.2022.11.007. 2111.03559.