List of the most distant astronomical objects explained

This article documents the most distant astronomical objects discovered and verified so far, and the time periods in which they were so classified.

For comparisons with the light travel distance of the astronomical objects listed below, the age of the universe since the Big Bang is currently estimated as 13.787±0.020 Gyr.[1]

Distances to remote objects, other than those in nearby galaxies, are nearly always inferred by measuring the cosmological redshift of their light. By their nature, very distant objects tend to be very faint, and these distance determinations are difficult and subject to errors. An important distinction is whether the distance is determined via spectroscopy or using a photometric redshift technique. The former is generally both more precise and also more reliable, in the sense that photometric redshifts are more prone to being wrong due to confusion with lower redshift sources that may have unusual spectra. For that reason, a spectroscopic redshift is conventionally regarded as being necessary for an object's distance to be considered definitely known, whereas photometrically determined redshifts identify "candidate" very distant sources. Here, this distinction is indicated by a "p" subscript for photometric redshifts.

The proper distance provides a measurement of how far a galaxy is at a fixed moment in time. At the present time the proper distance equals the comoving distance since the cosmological scale factor has value one:

a(t0)=1

. The proper distance represents the distance obtained as if one were able to freeze the flow of time (set

dt=0

in the FLRW metric) and walk all the way to a galaxy while using a meter stick.[2] For practical reasons, the proper distance is calculated as the distance traveled by light (set

ds=0

in the FLRW metric) from the time of emission by a galaxy to the time an observer (on Earth) receives the light signal. It differs from the “light travel distance” since the proper distance takes into account the expansion of the universe, i.e. the space expands as the light travels through it, resulting in numerical values which locate the most distant galaxies beyond the Hubble sphere and therefore with recession velocities greater than the speed of light c.[3]    

Most distant spectroscopically-confirmed objects

Most distant astronomical objects with spectroscopic redshift determinations
ImageNameRedshift
(z)
Light travel distance§
(Gly)[4] [5] [6] [7]
Proper distance(Gly)TypeNotes
JADES-GS-z14-0z = GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[8]
JADES-GS-z14-1z = GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[9]
JADES-GS-z13-0z = 13.576 / 13.596 / 13.474 / 13.47333.6GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[10]
UNCOVER-z13z = 13.5132.56GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[11]
JADES-GS-z12-0z = 13.556 / 13.576 / 13.454 / 13.45332.34GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRCam and JWST/NIRSpec, and CIII] line emission with JWST/NIRSpec. Most distant spectroscopic redshift from emission lines; most distant detection of non-primordial elements (C, O, Ne).
UNCOVER-z12z = 13.48 32.21GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.
GLASS-z12z = 13.536 / 13.556 / 13.434 / 13.43333.2GalaxyLyman-break galaxy discovered by JWST/NIRCam, confirmed by ALMA detection of [O III] emission[12]
UDFj-39546284z = 13.512 / 13.532 / 13.410 / 13.40931.77GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.
CEERS J141946.36+525632.8
(Maisie's Galaxy)[13]
z 13.4 31.69GalaxyLyman-break galaxy discovered by JWST
CEERS2 588
[14]
z 13.45 31.45GalaxyLyman-break galaxy discovered by JWST
GN-z11z = 10.6034 ± 0.001313.481 / 13.501 / 13.380 / 13.37931.18GalaxyLyman-break galaxy; detection of the Lyman break with HST at 5.5σ[15] and carbon emission lines with Keck/MOSFIRE at 5.3σ.[16] Conclusive redshift by JWST in February 2023[17]
JADES-GS-z10-0 UDFj-39546284z = 13.449 / 13.469 / 13.348 / 13.34731.04GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec
JD1z = 13.409 / 13.429 / 13.308 / 13.30730.12GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec[18]
Gz9p3z=9.3127 ± 0.0002 13.27730.27GalaxyA galaxy merger with a redshift estimated from [OII], Ne and H emission lines detected with JWST.[19]
MACS1149-JD1z = 13.361 / 13.381 / 13.261 / 13.26030.37GalaxyDetection of hydrogen emission line with the VLT, and oxygen line with ALMA[20]
EGSY8p7z = 13.325 / 13.345 / 13.225 / 13.22430.05GalaxyLyman-alpha emitter; detection of Lyman-alpha with Keck/MOSFIRE at 7.5σ confidence[21]
SMACS-4590z = 8.49613.308 / 13.328 / 13.208 / 13.20729.71GalaxyDetection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[22] [23] [24] [25]
A2744 YD4z = 8.3813.297 / 13.317 / 13.197 / 13.19629.50GalaxyLyman-alpha and [O III] emission detected with ALMA at 4.0σ confidence[26]
MACS0416 Y1z = 13.290 / 13.310 / 13.190 / 13.18929.44Galaxy[O III] emission detected with ALMA at 6.3σ confidence[27]
GRB 090423z = 13.282 / 13.302 / 13.182 / 13.18130Gamma-ray burstLyman-alpha break detected[28]
RXJ2129-11002z = 13.17529.31Galaxy[O III] doublet, Hβ, and [O II] doublet as well as Lyman-alpha break detected with JWST/NIRSpec prism[29]
RXJ2129-11022z = 13.17429.30Galaxy[O III] doublet and Hβ as well as Lyman-alpha break detected with JWST/NIRSpec prism
EGS-zs8-1z = 13.228 / 13.248 / 13.129 / 13.12829.5GalaxyLyman-break galaxy[30]
SMACS-6355z = 7.66513.221 / 13.241 / 13.121 / 13.12028.83GalaxyDetection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec
z7_GSD_3811z = 13.221 / 13.240 / 13.121 / 13.12028.83GalaxyLyman-alpha emitter[31]
SMACS-10612z = 7.65813.221 / 13.241 / 13.120 / 13.11928.83GalaxyDetection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec
QSO J0313–1806z = 13.218 / 13.238 / 13.119 / 13.11830QuasarLyman-alpha break detected[32]
ULAS J1342+0928z = 13.206 / 13.226 / 13.107 / 13.10629.36QuasarRedshift estimated from [C II] emission[33]
z8_GND_5296z = 7.5113.202 / 13.222 / 13.103 / 13.10230.01GalaxyLyman-alpha emitter[34]
A1689-zD1z = 13.201 / 13.221 / 13.102 / 13.10130GalaxyLyman-break galaxy[35]
GS2_1406z = 13.195 / 13.215 / 13.096 / 13.09528.62GalaxyLyman-alpha emitter[36]
GN-108036z = 7.21313.164 / 13.184 / 13.065 / 13.06429GalaxyLyman alpha emitter
SXDF-NB1006-213.164 / 13.184 / 13.065 / 13.06429Galaxy[O III] emission detected[37]
BDF-3299z = 13.149 / 13.169 / 13.051 / 13.05028.25GalaxyLyman-break galaxy[38]
ULAS J1120+0641z = 13.146 / 13.166 / 13.048 / 13.04729.85QuasarRedshift estimated from Si III]+C III] and Mg II emission lines[39]
A1703 zD6z = 13.140 / 13.160 / 13.042 / 13.04129GalaxyGravitationally-lensed Lyman-alpha emitter[40]
BDF-521z = 13.135 / 13.155 / 13.037 / 13.03628.43GalaxyLyman-break galaxy
G2_1408z = 13.130 / 13.150 / 13.032 / 13.03028.10GalaxyLyman-alpha emitter[41]
IOK-1z = 6.96513.129 / 13.149 / 13.030 / 13.02928.09GalaxyLyman-alpha emitter[42]
LAE J095950.99+021219.1z = 6.94413.126 / 13.146 / 13.028 / 13.02728.07GalaxyLyman-alpha emitter[43]
SDF-46975z = 6.84413.111 / 13.131 / 13.013 / 13.01227.95GalaxyLyman-alpha emitter
PSO J172.3556+18.7734z = 13.107 / 13.127 / 13.010 / 13.00927.93Quasar
(astrophysical jet)
Redshift estimated from Mg II emission[44]
§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

† Numeric value obtained using Wright (2006) with

H0

= 70,

\OmegaCM

= 0.30,

\OmegaDE

= 0.70.

Candidate most distant objects

Since the beginning of the James Webb Space Telescope's (JWST) science operations in June 2022, numerous distant galaxies far beyond what could be seen by the Hubble Space Telescope (z = 11) have been discovered thanks to the JWST's capability of seeing far into the infrared.[45] Previously in 2012, there were about 50 possible objects z = 8 or farther, and another 100 candidates at z = 7, based on photometric redshift estimates released by the Hubble eXtreme Deep Field (XDF) project from observations made between mid-2002 and December 2012.[46] Some objects included here have been observed spectroscopically, but had only one emission line tentatively detected, and are therefore still considered candidates by researchers.[47]

Notable candidates for most distant astronomical objects
NameRedshift
(z)
Light travel distance§
(Gly)
TypeNotes
F200DB-045zp =
or or
13.725 / 13.745 / 13.623 / 13.621GalaxyLyman-break galaxy discovered by JWST
NOTE: The redshift value of the galaxy presented by the procedure in one study may differ from the values presented in other studies using different procedures.[48] [49]
F200DB-175zp = 13.657 / 13.677 / 13.555 / 13.554GalaxyLyman-break galaxy discovered by JWST
S5-z17-1
or
13.653 / 13.673 / 13.551 / 13.550GalaxyLyman-break galaxy discovered by JWST; tentative (5.1σ) ALMA detection of a single emission line possibly attributed to either [C II] (z =) or [O III] (z =).[50]
F150DB-041zp =
or
13.653 / 13.673 / 13.551 / 13.549GalaxyLyman-break galaxy discovered by JWST
SMACS-z16azp =
or
13.651 / 13.671 / 13.549 / 13.548GalaxyLyman-break galaxy discovered by JWST[51] [52]
F200DB-015zp = 13.648 / 13.668 / 13.546 / 13.545GalaxyLyman-break galaxy discovered by JWST
F200DB-181zp = 13.648 / 13.668 / 13.546 / 13.545GalaxyLyman-break galaxy discovered by JWST
F200DB-159zp = 13.648 / 13.668 / 13.546 / 13.545GalaxyLyman-break galaxy discovered by JWST
F200DB-086zp =
or
13.639 / 13.659 / 13.537 / 13.536GalaxyLyman-break galaxy discovered by JWST
SMACS-z16bzp =
or
13.637 / 13.657 / 13.535 / 13.534GalaxyLyman-break galaxy discovered by JWST
F150DB-048zp = 13.629 / 13.649 / 13.527 / 13.526GalaxyLyman-break galaxy discovered by JWST
F150DB-007zp = 13.619 / 13.639 / 13.517 / 13.516GalaxyLyman-break galaxy discovered by JWST
F150DB-004zp = 13.602 / 13.622 / 13.500 / 13.499GalaxyLyman-break galaxy discovered by JWST
F150DB-079zp = 13.596 / 13.616 / 13.494 / 13.493GalaxyLyman-break galaxy discovered by JWST
F150DA-007zp = 13.583 / 13.603 / 13.481 / 13.480GalaxyLyman-break galaxy discovered by JWST
F150DA-053zp = 13.583 / 13.603 / 13.481 / 13.480GalaxyLyman-break galaxy discovered by JWST
F150DA-050zp = 13.583 / 13.603 / 13.481 / 13.480GalaxyLyman-break galaxy discovered by JWST
F150DA-058zp =
13.583 / 13.603 / 13.481 / 13.480GalaxyLyman-break galaxy discovered by JWST
F150DA-038zp = 13.583 / 13.603 / 13.481 / 13.480GalaxyLyman-break galaxy discovered by JWST
HD1z = 13.579 / 13.599 / 13.477 / 13.476GalaxyNot yet spectroscopically confirmed. Guinness World Record of the most distant confirmed galaxy
Lyman-break galaxy (5σ confidence) followed with a tentative ALMA detection of a single [O III] oxygen emission line only (4σ confidence)[53]
F150DA-010zp = 13.562 / 13.582 / 13.460 / 13.459GalaxyLyman-break galaxy discovered by JWST
S5-z12-1zp = 13.553 / 13.573 / 13.452 / 13.451GalaxyLyman-break galaxy discovered by JWST
CEERS-27535 4zp = 13.553 / 13.573 / 13.452 / 13.451GalaxyLyman-break galaxy discovered by JWST[54]
SMACS-1566zp = 13.542 / 13.562 / 13.441 / 13.440GalaxyLyman-break galaxy discovered by JWST
SMACS-z12b
(F150DA-077)
zp =
or
13.541 / 13.561 / 13.440 / 13.439GalaxyLyman-break galaxy discovered by JWST
SMACS-z12azp = 13.539 / 13.559 / 13.437 / 13.436GalaxyLyman-break galaxy discovered by JWST
CR2-z12-4zp = 13.534 / 13.554 / 13.432 / 13.431GalaxyLyman-break galaxy discovered by JWST
SMACS-10566zp = 13.532 / 13.552 / 13.430 / 13.429GalaxyLyman-break galaxy discovered by JWST
XDFH-2395446286zp = 13.530 / 13.550 / 13.429 / 13.428GalaxyLyman-break galaxy detected by JWST and Hubble[55]
CR2-z12-2zp = 13.529 / 13.549 / 13.427 / 13.426GalaxyLyman-break galaxy discovered by JWST
9-BUSCARzp = 13.527 / 13.547 / 13.425 / 13.424GalaxyLyman-break galaxy discovered by JWST[56]
SMACS-8347zp = 13.526 / 13.546 / 13.425 / 13.424GalaxyLyman-break galaxy discovered by JWST
CEERS-26409 4zp = 13.526 / 13.546 / 13.425 / 13.424GalaxyLyman-break galaxy discovered by JWST
F150DB-069zp = 13.522 / 13.542 / 13.420 / 13.419GalaxyLyman-break galaxy discovered by JWST
XDFH-2334046578zp = 13.522 / 13.542 / 13.420 / 13.419GalaxyLyman-break galaxy detected by JWST and Hubble
CR2-z12-3zp = 13.515 / 13.535 / 13.414 / 13.413GalaxyLyman-break galaxy discovered by JWST
CR2-z12-1zp = 13.514 / 13.534 / 13.413 / 13.412GalaxyLyman-break galaxy discovered by JWST
F150DB-088zp = 13.513 / 13.533 / 13.411 / 13.410GalaxyLyman-break galaxy discovered by JWST
F150DB-084zp = 13.513 / 13.533 / 13.411 / 13.410GalaxyLyman-break galaxy discovered by JWST
F150DB-044zp = 13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy discovered by JWST
XDFH-2404647339zp = 13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy detected by JWST and Hubble
F150DB-075zp =
13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy discovered by JWST
F150DA-062zp =
13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy discovered by JWST
CEERS-127682zp = 13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy discovered by JWST
CEERS-5268 2zp = 13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy discovered by JWST
F150DA-060zp = 13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy discovered by JWST
F150DA-031zp = 13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy discovered by JWST
F150DA-052zp = 13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy discovered by JWST
F150DB-054zp = 13.503 / 13.523 / 13.402 / 13.401GalaxyLyman-break galaxy discovered by JWST
SMACS-z11dzp =
or
GalaxyLyman-break galaxy discovered by JWST
CEERS-77241zp = GalaxyLyman-break galaxy discovered by JWST
CEERS-6647zp = GalaxyLyman-break galaxy discovered by JWST
CEERS-622 4zp = GalaxyLyman-break galaxy discovered by JWST
SMACS-z11czp =
or
GalaxyLyman-break galaxy discovered by JWST
SMACS-z11bzp =
or
GalaxyLyman-break galaxy discovered by JWST
F150DA-005zp = GalaxyLyman-break galaxy discovered by JWST
F150DA-020zp = GalaxyLyman-break galaxy discovered by JWST
CEERS-61486zp = GalaxyLyman-break galaxy discovered by JWST
SMACS-z11e
(F150DA-081)
zp =
or
GalaxyLyman-break galaxy discovered by JWST
SMACS-z11azp =
or
GalaxyLyman-break galaxy discovered by JWST
CR3-z12-1zp = GalaxyLyman-break galaxy discovered by JWST
F150DA-026zp = GalaxyLyman-break galaxy discovered by JWST
F150DA-036zp = GalaxyLyman-break galaxy discovered by JWST
SMACS-z10ezp =
or
GalaxyLyman-break galaxy discovered by JWST
F150DB-040zp = GalaxyLyman-break galaxy discovered by JWST
EGS-14506zp = GalaxyLyman-break galaxy discovered by JWST[57]
MACS0647-JDzp = GalaxyGravitationally lensed into three images by a galaxy cluster; detected by JWST and Hubble[58] [59]
GLASS-z10
(GLASS-1698)
z = 10.38GalaxyLyman-break galaxy discovered by JWST; tentative (4.4σ) ALMA detection of [O III] emission line only[60] [61]
EGS-7860zp = GalaxyLyman-break galaxy discovered by JWST
SPT0615-JDzp = 13.419Galaxy[62]
A2744-JDzp≅9.813.412GalaxyGalaxy is being magnified and lensed into three multiple images, geometrically supporting its redshift.[63] [64]
MACS1149-JD1zp≅9.613.398[65] Candidate galaxy or protogalaxy[66]
GRB 090429Bzp≅9.413.383[67] Gamma-ray burst[68] The photometric redshift in this instance has quite large uncertainty, with the lower limit for the redshift being z>7.
UDFy-33436598zp≅8.613.317Candidate galaxy or protogalaxy[69]
UDFy-38135539zp≅8.613.317Candidate galaxy or protogalaxyA spectroscopic redshift of z = 8.55 was claimed for this source in 2010,[70] but has subsequently been shown to be mistaken.[71]
BoRG-58zp≅813.258Galaxy cluster or protoclusterProtocluster candidate[72]
§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

List of most distant objects by type

Most distant object by type
TypeObjectRedshift
(distance)
Notes
Any astronomical object, no matter what typeJADES-GS-z14-0z = 14.32Most distant galaxy with a spectroscopically confirmed redshift .
Galaxy or protogalaxy
Galaxy clusterCL J1001+0220z ≅ 2.506As of 2016[73]

See also: List of galaxy clusters.

Galaxy superclusterHyperion proto-superclusterz = 2.45This supercluster at the time of its discovery in 2018 was the earliest and largest proto-supercluster found to date.[74]
Galaxy protoclusterA2744z7p9ODz = 7.88This protocluster at the time of its discovery in 2023 was the most distant protocluster found and spectroscopically confirmed to date.[75]

See also: List of galaxy groups and clusters.

QuasarUHZ1z ~ 10.0

See also: List of quasars.

Black hole
Star or protostar or post-stellar corpse
(detected by an event)
Progenitor of GRB 090423z = 8.2[76] Note, GRB 090429B has a photometric redshift zp≅9.4,[77] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.

See also: List of gamma-ray bursts. Estimated an approximate distance of 13 billion lightyears from Earth

Star or protostar or post-stellar corpse
(detected as a star)
WHL0137-LS (Earendel)
(12.9 Gly)
Most distant individual star detected (March, 2022).[78] [79] Previous records include SDSS J1229+1122[80] and MACS J1149 Lensed Star 1.[81]
Star clusterThe Sparklerz = 1.378
(13.9 Gly)
Galaxy with globular clusters gravitationally lensed in SMACS J0723.3-7327[82]
System of star clusters
X-ray jetPJ352–15 quasar jetz = 5.831
(12.7 Gly)[83]
The previous recordholder was at 12.4 Gly.[84] [85]
MicroquasarXMMU J004243.6+412519(2.5 Mly)First extragalactic microquasar discovered[86] [87] [88]
Nebula-like objectHimikoz = 6.595Possibly one of the largest objects in the early universe.[89] [90]
Magnetic field9io9z = 2.554 (11.1 Gly)Observations from ALMA has shown that the lensed galaxy 9io9 contains a magnetic field.
PlanetSWEEPS-11 / SWEEPS-04(27,710 ly)[91]
  • An analysis of the lightcurve of the microlensing event PA-99-N2 suggests the presence of a planet orbiting a star in the Andromeda Galaxy.[92]
  • A controversial microlensing event of lobe A of the double gravitationally lensed Q0957+561 suggests that there is a planet in the lensing galaxy lying at redshift 0.355 (3.7 Gly).[93] [94]
Most distant event by type
TypeEventRedshiftNotes
Gamma-ray burstGRB 090423z = 8.2 Note, GRB 090429B has a photometric redshift zp≅9.4, and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.

See also: List of gamma-ray bursts.

Core collapse supernovaSN 1000+0216z = 3.8993[95]

See also: List of most distant supernovae.

Type Ia supernovaSN UDS10Wilz = 1.914[96]

See also: List of supernovae.

Type Ia supernovaSN SCP-0401
(Mingus)
z = 1.71First observed in 2004, it was not until 2013 that it could be identified as a Type-Ia SN.[97] [98]

See also: List of supernovae.

Cosmic DecouplingCosmic Microwave Background Radiation creationz~1000 to 1089[99] [100]

Timeline of most distant astronomical object recordholders

Objects in this list were found to be the most distant object at the time of determination of their distance. This is frequently not the same as the date of their discovery.

Distances to astronomical objects may be determined through parallax measurements, use of standard references such as cepheid variables or Type Ia supernovas, or redshift measurement. Spectroscopic redshift measurement is preferred, while photometric redshift measurement is also used to identify candidate high redshift sources. The symbol z represents redshift.

Most Distant Object Titleholders (not including candidates based on photometric redshifts)
ObjectTypeDateDistance
(z = Redshift)
Notes
JADES-GS-z14-0Galaxy2024–presentz = 14.32
JADES-GS-z13-0Galaxy2022 - 2024z = 13.20
GN-z11Galaxy2016–2022z = 10.6
EGSY8p7Galaxy2015 − 2016z = 8.68[101] [102] [103] [104]
Progenitor of GRB 090423 / Remnant of GRB 090423Gamma-ray burst progenitor / Gamma-ray burst remnant2009 − 2015z = 8.2[105]
IOK-1Galaxy2006 − 2009z = 6.96[106] [107] [108]
SDF J132522.3+273520Galaxy2005 − 2006z = 6.597[109]
SDF J132418.3+271455Galaxy2003 − 2005z = 6.578[110] [111] [112]
HCM-6AGalaxy2002 − 2003z = 6.56The galaxy is lensed by galaxy cluster Abell 370. This was the first non-quasar galaxy found to exceed redshift 6. It exceeded the redshift of quasar SDSSp J103027.10+052455.0 of z = 6.28[113] [114] [115] [116]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
Quasar2001 − 2002z = 6.28[117] [118] [119] [120]
SDSS 1044–0125
(SDSSp J104433.04–012502.2)
Quasar2000 − 2001z = 5.82[121] [122] [123] [124] [125] [126] [127]
SSA22-HCM1Galaxy1999 − 2000z>=5.74[128]
HDF 4-473.0Galaxy1998 − 1999z = 5.60[129]
RD1 (0140+326 RD1)Galaxy1998z = 5.34[130] [131] [132] [133]
CL 1358+62 G1 & CL 1358+62 G2Galaxies1997 − 1998z = 4.92These were the most remote objects discovered at the time. The pair of galaxies were found lensed by galaxy cluster CL1358+62 (z = 0.33). This was the first time since 1964 that something other than a quasar held the record for being the most distant object in the universe.[134] [135] [136]
PC 1247–3406Quasar1991 − 1997z = 4.897[137] [138] [139] [140] [141]
PC 1158+4635Quasar1989 − 1991z = 4.73[142] [143] [144] [145]
Q0051–279Quasar1987 − 1989z = 4.43[146] [147] [148] [149]
Q0000–26
(QSO B0000–26)
Quasar1987z = 4.11[150]
PC 0910+5625
(QSO B0910+5625)
Quasar1987z = 4.04This was the second quasar discovered with a redshift over 4.[151] [152]
Q0046–293
(QSO J0048–2903)
Quasar1987z = 4.01[153] [154]
Q1208+1011
(QSO B1208+1011)
Quasar1986 − 1987z = 3.80This is a gravitationally-lensed double-image quasar, and at the time of discovery to 1991, had the least angular separation between images, 0.45.[155] [156]
PKS 2000-330
(QSO J2003–3251, Q2000–330)
Quasar1982 − 1986z = 3.78[157] [158]
OQ172
(QSO B1442+101)
Quasar1974 − 1982z = 3.53[159]
OH471
(QSO B0642+449)
Quasar1973 − 1974z = 3.408Nickname was "the blaze marking the edge of the universe".[160] [161] [162] [163]
4C 05.34Quasar1970 − 1973z = 2.877Its redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.[164] [165] [166]
5C 02.56
(7C 105517.75+495540.95)
Quasar1968 − 1970z = 2.399[167] [168]
4C 25.05
(4C 25.5)
Quasar1968z = 2.358[169]
PKS 0237–23
(QSO B0237–2321)
Quasar1967 − 1968z = 2.225[170] [171] [172]
4C 12.39
(Q1116+12, PKS 1116+12)
Quasar1966 − 1967z = 2.1291[173]
4C 01.02
(Q0106+01, PKS 0106+1)
Quasar1965 − 1966z = 2.0990[174] [175]
3C 9Quasar1965z = 2.018[176] [177] [178] [179] [180]
3C 147Quasar1964 − 1965z = 0.545[181] [182] [183] [184]
3C 295Radio galaxy1960 − 1964z = 0.461[185] [186] [187]
LEDA 25177 (MCG+01-23-008)Brightest cluster galaxy1951 − 1960z = 0.2
(V = 61000 km/s)
This galaxy lies in the Hydra Supercluster. It is located at B1950.0 and is the BCG of the fainter Hydra Cluster Cl 0855+0321 (ACO 732).[188] [189] [190] [191] [192]
LEDA 51975 (MCG+05-34-069)Brightest cluster galaxy1936 – z = 0.13
(V = 39000 km/s)
The brightest cluster galaxy of the Bootes Cluster (ACO 1930), an elliptical galaxy at B1950.0 apparent magnitude 17.8, was found by Milton L. Humason in 1936 to have a 40,000 km/s recessional redshift velocity.[193] [194]
LEDA 20221 (MCG+06-16-021)Brightest cluster galaxy1932 –z = 0.075
(V = 23000 km/s)
This is the BCG of the Gemini Cluster (ACO 568) and was located at B1950.0 [195]
BCG of WMH Christie's Leo ClusterBrightest cluster galaxy1931 − 1932z =
(V = 19700 km/s)
[196] [197] [198]
BCG of Baede's Ursa Major ClusterBrightest cluster galaxy1930 − 1931z =
(V = 11700 km/s)
[199]
NGC 4860Galaxy1929 − 1930z = 0.026
(V = 7800 km/s)
[200]
NGC 7619Galaxy1929z = 0.012
(V = 3779 km/s)
Using redshift measurements, NGC 7619 was the highest at the time of measurement. At the time of announcement, it was not yet accepted as a general guide to distance, however, later in the year, Edwin Hubble described redshift in relation to distance, which became accepted widely as an inferred distance.[201] [202]
NGC 584
(Dreyer nebula 584)
Galaxy1921 − 1929z = 0.006
(V = 1800 km/s)
At the time, nebula had yet to be accepted as independent galaxies. However, in 1923, galaxies were generally recognized as external to the Milky Way.[203] [204] [205] [206]
M104 (NGC 4594)Galaxy1913 − 1921z = 0.004
(V = 1180 km/s)
This was the second galaxy whose redshift was determined; the first being Andromeda – which is approaching us and thus cannot have its redshift used to infer distance. Both were measured by Vesto Melvin Slipher. At this time, nebula had yet to be accepted as independent galaxies. NGC 4594 was measured originally as 1000 km/s, then refined to 1100, and then to 1180 in 1916.[207]
Arcturus
(Alpha Bootis)
Star1891 − 1910160 ly
(18 mas)
(this is very inaccurate, true=37 ly)
This number is wrong; originally announced in 1891, the figure was corrected in 1910 to 40 ly (60 mas). From 1891 to 1910, it had been thought this was the star with the smallest known parallax, hence the most distant star whose distance was known. Prior to 1891, Arcturus had previously been recorded of having a parallax of 127 mas.[208] [209] [210] [211]
Capella
(Alpha Aurigae)
Star1849–189172 ly
(46 mas)
[212] [213] [214]
Polaris
(Alpha Ursae Minoris)
Star1847 - 184950 ly
(80 mas)
(this is very inaccurate, true=~375 ly)
[215]
Vega
(Alpha Lyrae)
Star (part of a double star pair)1839 - 18477.77 pc
(125 mas)
[216]
61 CygniBinary star1838 − 18393.48 pc
(313.6 mas)
This was the first star other than the Sun to have its distance measured.[217] [218]
UranusPlanet of the Solar System1781 − 183818 AUThis was the last planet discovered before the first successful measurement of stellar parallax. It had been determined that the stars were much farther away than the planets.
SaturnPlanet of the Solar System1619 − 178110 AUFrom Kepler's Third Law, it was finally determined that Saturn is indeed the outermost of the classical planets, and its distance derived. It had only previously been conjectured to be the outermost, due to it having the longest orbital period, and slowest orbital motion. It had been determined that the stars were much farther away than the planets.
MarsPlanet of the Solar System1609 − 16192.6 AU when Mars is diametrically opposed to EarthKepler correctly characterized Mars and Earth's orbits in the publication Astronomia nova. It had been conjectured that the fixed stars were much farther away than the planets.
SunStar3rd century BC — 1609380 Earth radii (very inaccurate, true=16000 Earth radii) Aristarchus of Samos made a measurement of the distance of the Sun from the Earth in relation to the distance of the Moon from the Earth. The distance to the Moon was described in Earth radii (20, also inaccurate). The diameter of the Earth had been calculated previously. At the time, it was assumed that some of the planets were further away, but their distances could not be measured. The order of the planets was conjecture until Kepler determined the distances from the Sun of the five known planets that were not Earth. It had been conjectured that the fixed stars were much farther away than the planets.
MoonMoon of a planet3rd century BC20 Earth radii (very inaccurate, true=64 Earth radii) Aristarchus of Samos made a measurement of the distance between the Earth and the Moon. The diameter of the Earth had been calculated previously.

List of objects by year of discovery that turned out to be most distant

This list contains a list of most distant objects by year of discovery of the object, not the determination of its distance. Objects may have been discovered without distance determination, and were found subsequently to be the most distant known at that time. However, object must have been named or described. An object like OJ 287 is ignored even though it was detected as early as 1891 using photographic plates, but ignored until the advent of radiotelescopes.

Examples
Year of record Object Type Detected using First record by (1)
964 2.5[219] naked eye Abd al-Rahman al-Sufi[220]
1654 3 refracting telescope Giovanni Battista Hodierna[221]
1779 68[222] Charles Messier[223]
1785 76.4[224] William Herschel
1880s 206 ± 29[225] Dreyer, Herschel
1959 2,400[226] Maarten Schmidt, Bev Oke[227]
1960 5,000[228] Rudolph Minkowski
2009 13,000[229] Krimm, H. et al.[230]

See also

Notes and References

  1. Planck Collaboration . 2020 . Planck 2018 results. VI. Cosmological parameters . Astronomy & Astrophysics . 641 . page A6 (see PDF page 15, Table 2: "Age/Gyr", last column) . 10.1051/0004-6361/201833910 . 1807.06209 . 2020A&A...641A...6P . 119335614.
  2. Book: Guidry, Mike . Modern general relativity: black holes, gravitational waves, and cosmology . 2019 . Cambridge university press . 978-1-107-19789-3 . Cambridge New York.
  3. Davis . Tamara M. . Lineweaver . Charles H. . 2004 . Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe . Publications of the Astronomical Society of Australia . en . 21 . 1 . 97–109 . 10.1071/AS03040 . astro-ph/0310808 . 2004PASA...21...97D . 13068122 . 1323-3580.
  4. Web site: . UCLA Cosmological Calculator . 2015 . . 6 August 2022 . Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2015: H0=67.74 and OmegaM=0.3089 (see Table/Planck2015 at "Lambda-CDM model#Parameters")
  5. Web site: . UCLA Cosmological Calculator . 2018 . . 6 August 2022 . Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2018: H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters")
  6. Web site: . ICRAR Cosmology Calculator . 2022 . . 6 August 2022 . ICRAR Cosmology Calculator - Set H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters")
  7. Web site: Kempner . Joshua . KEMPNER Cosmology Calculator . 2022 . Kempner.net . 6 August 2022 . KEMP Cosmology Calculator - Set H0=67.4, OmegaM=0.315, and OmegaΛ=0.6847 (see Table/Planck2018 at "Lambda-CDM model#Parameters")
  8. etal . B. . Robertson . Earliest galaxies in the JADES Origins Field: luminosity function and cosmic star-formation rate density 300 Myr after the Big Bang . Astrophysical Journal . 2024-05-28 . 970 . 1 . 31 . 10.3847/1538-4357/ad463d . free . 2312.10033 . 2024ApJ...970...31R .
  9. etal . S. . Carniani. A shining cosmic dawn: spectroscopic confirmation of two luminous galaxies at z ∼ 14. 2024-05-28 . 2405.18485 .
  10. etal . B. E. . Robertson . Identification and properties of intense star-forming galaxies at redshifts z > 10 . Nature Astronomy . 2023 . 7 . 5 . 611–621 . 10.1038/s41550-023-01921-1 . 2212.04480. 2023NatAs...7..611R . 257968812 .
  11. Wang . Bingjie . et al . 2023-11-13 . UNCOVER: Illuminating the Early Universe—JWST/NIRSpec Confirmation of z > 12 Galaxies . The Astrophysical Journal Letters . 957 . 2 . L34 . 10.3847/2041-8213/acfe07 . 2308.03745 . 2023ApJ...957L..34W . 2041-8205 . free .
  12. Deep ALMA redshift search of a z~12 GLASS-JWST galaxy candidate. Tom J. L. C.. Bakx. etal. 2208.13642. Monthly Notices of the Royal Astronomical Society. 10.1093/mnras/stac3723. January 2023. 519 . 4 . 5076–5085 . free .
  13. Haro . Pablo Arrabal . Dickinson . Mark . Finkelstein . Steven L. . Kartaltepe . Jeyhan S. . Donnan . Callum T. . Burgarella . Denis . Carnall . Adam . Cullen . Fergus . Dunlop . James S. . Fernández . Vital . Fujimoto . Seiji . Jung . Intae . Krips . Melanie . Larson . Rebecca L. . Papovich . Casey . 2023-08-14 . Confirmation and refutation of very luminous galaxies in the early universe . Nature . 622 . 7984 . 707–711 . 10.1038/s41586-023-06521-7 . 37579792 . 0028-0836. 2303.15431 . 2023Natur.622..707A . 257766818 .
  14. Harikane . Yuichi . Nakajima . Kimihiko . Ouchi . Masami . Umeda . Hiroya . Isobe . Yuki . Ono . Yoshiaki . Xu . Yi . Zhang . Yechi . 3 . Pure Spectroscopic Constraints on UV Luminosity Functions and Cosmic Star Formation History From 25 Galaxies at $z_\mathrm=8.61-13.20$ Confirmed with JWST/NIRSpec . 2304.06658v3 . 2023 . astro-ph.GA .
  15. A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy . . P. A. . Oesch . G. . Brammer . P. . van Dokkum . etal . 819 . 2 . 129 . March 2016 . 1603.00461 . 2016ApJ...819..129O . 10.3847/0004-637X/819/2/129. 119262750 . free .
  16. Evidence for GN-z11 as a luminous galaxy at redshift 10.957. etal. Linhua. Jiang. Nature Astronomy. January 2021. 5. 3 . 256–261. 10.1038/s41550-020-01275-y. 2012.06936. 2021NatAs...5..256J. 229156468 .
  17. JADES NIRSpec Spectroscopy of GN-z11: Lyman- α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy . 2023 . 10.1051/0004-6361/202346159 . 2302.07256 . Bunker . Andrew J. . Saxena . Aayush . Cameron . Alex J. . Willott . Chris J. . Curtis-Lake . Emma . Jakobsen . Peter . Carniani . Stefano . Smit . Renske . Maiolino . Roberto . Witstok . Joris . Curti . Mirko . d'Eugenio . Francesco . Jones . Gareth C. . Ferruit . Pierre . Arribas . Santiago . Charlot . Stephane . Chevallard . Jacopo . Giardino . Giovanna . De Graaff . Anna . Looser . Tobias J. . Lützgendorf . Nora . Maseda . Michael V. . Rawle . Tim . Rix . Hans-Walter . Del Pino . Bruno Rodríguez . Alberts . Stacey . Egami . Eiichi . Eisenstein . Daniel J. . Endsley . Ryan . Hainline . Kevin . Astronomy & Astrophysics . 677 . A88 . 2023A&A...677A..88B . 256846361 . 1 .
  18. Roberts-Borsani . Guido . Treu . Tommaso . Chen . Wenlei . Morishita . Takahiro . Vanzella . Eros . Zitrin . Adi . Bergamini . Pietro . Castellano . Marco . Fontana . Adriano . Grillo . Claudio . Kelly . Patrick L. . Merlin . Emiliano . Paris . Diego . Rosati . Piero . Acebron . Ana . A shot in the Dark (Ages): a faint galaxy at $z=9.76$ confirmed with JWST . Nature Astronomy . 2023 . 618 . 7965 . 480–483 . 10.1038/s41586-023-05994-w . 37198479 . 2210.15639. 2023Natur.618..480R . 258741077 .
  19. Boyett . Kristan . Trenti . Michele . Leethochawalit . Nicha . Calabró . Antonello . Metha . Benjamin . Roberts-Borsani . Guido . Dalmasso . Nicoló . Yang . Lilan . Santini . Paola . Treu . Tommaso . Jones . Tucker . Henry . Alaina . Mason . Charlotte A. . Morishita . Takahiro . Nanayakkara . Themiya . 2024-03-07 . A massive interacting galaxy 510 million years after the Big Bang . Nature Astronomy . 8 . 5 . en . 657–672 . 10.1038/s41550-024-02218-7 . 2303.00306 . 2024NatAs.tmp...53B . 2397-3366.
  20. T. Hashimoto . N. Laporte . K. Mawatari . R. S. Ellis . A. K. Inoue . E. Zackrisson . G. Roberts-Borsani . W. Zheng . Y. Tamura . F. E. Bauer . T. Fletcher . Y. Harikane . B. Hatsukade . N. H. Hayatsu . Y. Matsuda . H. Matsuo . T. Okamoto . M. Ouchi . R. Pello . C. Rydberg . I. Shimizu . Y. Taniguchi . H. Umehata . N. Yoshida . The Onset of Star Formation 250 Million Years After the Big Bang . Nature . 557 . 7705 . 312–313 . 1805.05966 . 2018Natur.557..392H . 10.1038/s41586-018-0117-z . 29765123 . 2019 . 21702406 .
  21. Adi Zitrin . Ivo Labbe . Sirio Belli . Rychard Bouwens . Richard S. Ellis . Guido Roberts-Borsani . Daniel P. Stark . Pascal A. Oesch . Renske Smit . Lyman-alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization . The Astrophysical Journal . 810 . 1 . L12 . 1507.02679 . 2015ApJ...810L..12Z . 10.1088/2041-8205/810/1/L12 . 2015 . 11524667.
  22. The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z 8. Mirko . Curti. etal. Monthly Notices of the Royal Astronomical Society. January 2023. 518. 1. 425–438. 10.1093/mnras/stac2737. free . 2207.12375. 2023MNRAS.518..425C.
  23. A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories. A. C.. Carnall. etal. Monthly Notices of the Royal Astronomical Society: Letters. January 2023. 518. 1. L45–L50. 10.1093/mnrasl/slac136. free . 2207.08778. 2023MNRAS.518L..45C.
  24. First look with JWST spectroscopy: Resemblance among z ~ 8 galaxies and local analogs. D.. Schaerer. etal. Astronomy & Astrophysics. September 2022. 665. L4. 6. 10.1051/0004-6361/202244556. 2207.10034 . 2022A&A...665L...4S. 252175886 .
  25. First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007. Harley. Katz. etal. Monthly Notices of the Royal Astronomical Society. January 2023. 518. 1. 592–603. 10.1093/mnras/stac2657. free . 2207.13693. 2023MNRAS.518..592K.
  26. Laporte, N. . Ellis, R. S. . Boone, F. . Bauer, F. E. . Quénard, D. . Roberts-Borsani, G. W. . Pelló, R. . Pérez-Fournon, I. . Streblyanska, A. . Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy . The Astrophysical Journal . 832 . 2 . L21 . 1703.02039 . 2017ApJ...837L..21L . 10.3847/2041-8213/aa62aa . 2017 . 51841290 . free .
  27. Tamura, Y. . Mawatari, K. . Hashimoto, T. . Inoue, A. K. . Zackrisson, E. . Christensen, L. . Binggeli, C . Matsuda, Y. . Matsuo, H. . Takeuchi, T. T. . Asano, R. S. . Sunaga, K. . Shimizu, I. . Okamoto, T. . Yoshida, N. . Lee, M. . Shibuya, T. . Taniguchi, Y. . Umehata, H. . Hatsukade, B. . Kohno, K. . Ota, K. . Detection of the Far-infrared [O III] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era . The Astrophysical Journal . 874 . 1 . 27 . 1806.04132 . 2019ApJ...874...27T . 10.3847/1538-4357/ab0374 . 2017 . 55313459 . free .
  28. 2009Natur.461.1254T . A gamma-ray burst at a redshift of z~8.2 . Nature . 461 . 7268 . 1254–7 . Tanvir . N. R. . Fox . D. B. . Levan . A. J. . Berger . E. . Wiersema . K. . Fynbo . J. P. U. . Cucchiara . A. . Krühler . T. . Gehrels . N. . Bloom . J. S. . Greiner . J. . Evans . P. A. . Rol . E. . Olivares . F. . Hjorth . J. . Jakobsson . P. . Farihi . J. . Willingale . R. . Starling . R. L. C. . Cenko . S. B. . Perley . D. . Maund . J. R. . Duke . J. . Wijers . R. A. M. J. . Adamson . A. J. . Allan . A. . Bremer . M. N. . Burrows . D. N. . Castro-Tirado . A. J. . Cavanagh . B. . 29 . 2009 . 10.1038/nature08459 . 19865165. 0906.1577 . 205218350 .
  29. Langeroodi, Danial . Hjorth, Jens . Chen, Wenlei . Kelly, Patrick L. . Williams, Hayley . Lin, Yu-Heng . Scarlata, Claudia . Zitrin, Adi . Broadhurst, Tom . Diego, Jose M. . Huang, Xiaosheng . Filippenko, Alexei V. . Foley, Ryan J. . Jha, Saurabh . Koekemoer, Anton M. . Oguri, Masamune . Perez-Fournon, Ismael . Pierel, Justin . Poidevin, Frederick . Strolger, Lou . Evolution of the Mass-Metallicity Relation from Redshift z≈8 to the Local Universe . The Astrophysical Journal . 2212.02491 . 2015ApJ...804L..30O . 2022. 804 . 2 . 10.1088/2041-8205/804/2/L30 . 55115344 .
  30. P. A. Oesch . P. G. van Dokkum . G. D. Illingworth . R. J. Bouwens . I. Momcheva . B. Holden . G. W. Roberts-Borsani . R. Smit . M. Franx . I. Labbe . V. Gonzalez . D. Magee . A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 using Keck/MOSFIRE . 1502.05399 . 2015ApJ...804L..30O . 10.1088/2041-8205/804/2/L30 . 804 . 2 . The Astrophysical Journal . L30 . 2015 . 55115344.
  31. M. . Song . S. L. . Finkelstein . R. C. . Livermore . P. L. . Capak . M. . Dickinson . A. . Fontana. Keck/MOSFIRE Spectroscopy of z = 7–8 Galaxies: Lyman-alpha Emission from a Galaxy at z = 7.66 . The Astrophysical Journal . 826 . 2 . 113 . 1602.02160 . 2016 . 10.3847/0004-637X/826/2/113 . 2016ApJ...826..113S . 51806693 . free .
  32. 2101.03179 . 10.3847/2041-8213/abd8c6 . A Luminous Quasar at Redshift 7.642 . 2021 . Wang . Feige . Yang . Jinyi . Fan . Xiaohui . Hennawi . Joseph F. . Barth . Aaron J. . Banados . Eduardo . Bian . Fuyan . Boutsia . Konstantina . Connor . Thomas . Davies . Frederick B. . Decarli . Roberto . Eilers . Anna-Christina . Farina . Emanuele Paolo . Green . Richard . Jiang . Linhua . Li . Jiang-Tao . Mazzucchelli . Chiara . Nanni . Riccardo . Schindler . Jan-Torge . Venemans . Bram . Walter . Fabian . Wu . Xue-Bing . Yue . Minghao . Xiaohui Fan . The Astrophysical Journal . 907 . 1 . L1 . 2021ApJ...907L...1W . 231572944 . free .
  33. Bañados, Eduardo. etal. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 . 6 December 2017 . . 553. 7689. 473–476. 10.1038/nature25180 . 29211709. 1712.01860 . 2018Natur.553..473B . 205263326 .
  34. S. L. Finkelstein . C. Papovich . M. Dickinson . M. Song . V. Tilvi . A. M. Koekemoer . K. D. Finkelstein . B. Mobasher . H. C. Ferguson . M. Giavalisco . N. Reddy . M. L. N. Ashby . A. Dekel . G. G. Fazio . A. Fontana . N. A. Grogin . J.-S. Huang . D. Kocevski . M. Rafelski . B. J. Weiner . S. P. Willner . A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 . 1310.6031 . . 2013 . 502 . 7472 . 524–527 . 10.1038/nature12657 . 2013Natur.502..524F . 24153304. 4448085 .
  35. Watson . Darach . Christensen . Lise . Kirsten Kraiberg Knudsen . Knudsen . Kirsten Kraiberg . Richard . Johan . Gallazzi . Anna . Michałowski . Michał Jerzy . A dusty, normal galaxy in the epoch of reionization . Nature . 519 . 7543 . 327–330 . 10.1038/nature14164 . 25731171 . 1503.00002 . 2015Natur.519..327W . 2015. 2514879 .
  36. R. L. . Larson . S. L. . Finkelstein . N. . Pirzkal . R. . Ryan . V. . Tilvi . S. . Malhotra . J. . Rhoads . K. . Finkelstein . I. . Jung . L. . Christensen . A. . Cimatti . I. . Ferreras . N. . Grogin . A. M. . Koekemoer . N. . Hathi . R. . O'Connell . G. . Östlin . A. . Pasquali . J. . Pharo . B. . Rothberg . R. A. . Windhorst . Discovery of a z = 7.452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey . The Astrophysical Journal . 858 . 2 . 113 . 1712.05807 . 2018 . 10.3847/1538-4357/aab893 . 2018ApJ...858...94L . 119257857 . free .
  37. Detection of an oxygen emission line from a high redshift galaxy in the reionization epoch. Akio K.. Inoue. etal. Science. 352. 6293. 1559–1562. 10.1126/science.aaf0714. 1606.04989. 2016Sci...352.1559I. June 2016. 27312046. 206646433 .
  38. Vanzella . etal . 2011 . Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7 . . 730 . 2 . L35 . 10.1088/2041-8205/730/2/L35 . 2011ApJ...730L..35V . 1011.5500 . 53459241 .
  39. A luminous quasar at a redshift of z = 7.085 . Daniel J. Mortlock . Stephen J. Warren . Bram P. Venemans. etal . Nature . 474 . 7353 . 616–619 . 2011 . 10.1038/nature10159. 1106.6088 . 2011Natur.474..616M . 21720366. 2144362 .
  40. 2012ApJ...744..179S. 10.1088/0004-637X/744/2/179. Keck Spectroscopy of Faint 3 < z < 8 Lyman Break Galaxies: Evidence for a Declining Fraction of Emission Line Sources in the Redshift Range 6 < z < 8. The Astrophysical Journal. 744. 2. 7. January 2012. Schenker. Matthew A.. etal. 1107.1261. 119244384.
  41. 1010.2754 . Fontana . A. . The lack of intense Lyman~alpha in ultradeep spectra of z = 7 candidates in GOODS-S: Imprint of reionization? . The Astrophysical Journal . 725 . 2 . L205 . Vanzella . E. . Pentericci . L. . Castellano . M. . Giavalisco . M. . Grazian . A. . Boutsia . K. . Cristiani . S. . Dickinson . M. . Giallongo . E. . Maiolino . M. . Moorwood . A. . Santini . P. . 2010 . 10.1088/2041-8205/725/2/L205 . 2010ApJ...725L.205F. 119270473 .
  42. 1107.3159 . Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 – 7.213: Demographics of Lyman-Alpha Emission in z ~ 7 Galaxies . The Astrophysical Journal . 744 . 2 . 83 . Ono . Yoshiaki . Ouchi . Masami . Mobasher . Bahram . Dickinson . Mark . Penner . Kyle . Shimasaku . Kazuhiro . Weiner . Benjamin J. . Kartaltepe . Jeyhan S. . Nakajima . Kimihiko . Nayyeri . Hooshang . Stern . Daniel . Kashikawa . Nobunari . Spinrad . Hyron . 2011 . 10.1088/0004-637X/744/2/83 . 2012ApJ...744...83O. 119306980.
  43. 1205.3161 . Rhoads . James E. . A Lyman Alpha Galaxy at Redshift z = 6.944 in the COSMOS Field . The Astrophysical Journal . 752 . 2 . L28 . Hibon . Pascale . Malhotra . Sangeeta . Cooper . Michael . Weiner . Benjamin . 2012 . 10.1088/2041-8205/752/2/L28 . 2012ApJ...752L..28R. 118383532 .
  44. The Discovery of a Highly Accreting, Radio-loud Quasar at z = 6.82 . The Astrophysical Journal . Harvard University . 2021ApJ...909...80B . Bañados . Eduardo . Mazzucchelli . Chiara . Momjian . Emmanuel . Eilers . Anna-Christina . Wang . Feige . Schindler . Jan-Torge . Connor . Thomas . Andika . Irham Taufik . Barth . Aaron J. . Carilli . Chris . Davies . Frederick B. . Decarli . Roberto . Fan . Xiaohui . Farina . Emanuele Paolo . Hennawi . Joseph F. . Pensabene . Antonio . Stern . Daniel . Venemans . Bram P. . Wenzl . Lukas . Yang . Jinyi . 2021 . 909 . 1 . 80 . 10.3847/1538-4357/abe239 . 2103.03295 . 232135300 . free .
  45. First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73. Haojing. Yan. etal. The Astrophysical Journal Letters. January 2023. 942. L9. 20. free. 10.3847/2041-8213/aca80c. 2207.11558. 2023ApJ...942L...9Y.
  46. Web site: Our Latest Results . Garth Illingworth . Rychard Bouwens . Pascal Oesch . Ivo Labbe . Dan Magee . FirstGalaxies . December 2012 . March 10, 2016.
  47. A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch. Yuichi. Harikane. The Astrophysical Journal Supplement Series . 2023 . 265 . 1 . 5 . etal. 2208.01612. 10.3847/1538-4365/acaaa9 . 2023ApJS..265....5H . 251253150 . free .
  48. 2208.01612v3. Harikane . Yuichi . Ouchi . Masami . Oguri . Masamune . Ono . Yoshiaki . Nakajima . Kimihiko . Isobe . Yuki . Umeda . Hiroya . Mawatari . Ken . Zhang . Yechi . A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch . The Astrophysical Journal Supplement Series . 2023 . 265 . 1 . 5 . 10.3847/1538-4365/acaaa9 . 2023ApJS..265....5H . 251253150 . free .
  49. 2207.11671v2. Morishita . Takahiro . Stiavelli . Massimo . Physical Characterization of Early Galaxies in the Webb's First Deep Field SMACS J0723.3-7323 . The Astrophysical Journal Letters . 2023 . 946 . 2 . L35 . 10.3847/2041-8213/acbf50 . 2023ApJ...946L..35M . 254220684 . free .
  50. ALMA FIR View of Ultra High-redshift Galaxy Candidates at z ~ 11-17: Blue Monsters or Low- z Red Interlopers?. Seiji. Fujimoto. The Astrophysical Journal . etal. 2211.03896. 2023. 955 . 2 . 130 . 10.3847/1538-4357/aceb67 . 2023ApJ...955..130F . free .
  51. Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723. Atek. Hakim. etal. Monthly Notices of the Royal Astronomical Society. 10.1093/mnras/stac3144. 2207.12338. 2023MNRAS.519.1201A. November 2022. 519 . 1 . 1201–1220 . free .
  52. Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field. N. J.. Adams. etal. Monthly Notices of the Royal Astronomical Society. 10.1093/mnras/stac3347. 2207.11217. 2023MNRAS.518.4755A. November 2022. 518 . 3 . 4755–4766 . free .
  53. etal . Y. . Harikane . A Search for H-Dropout Lyman Break Galaxies at z ~ 12–16 . The Astrophysical Journal . 929 . 1 . 1 . 2022ApJ...929....1H . 10.3847/1538-4357/ac53a9 . April 2022 . 2112.09141. 246823511 . free .
  54. Donnan. C. T.. et al. . The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 - 15 from deep JWST and ground-based near-infrared imaging. Monthly Notices of the Royal Astronomical Society. 10.1093/mnras/stac3472. 2207.12356. 2023MNRAS.518.6011D. November 2022. 518 . 4 . 6011–6040 . free .
  55. Evolution of the UV LF from z ~ 15 to z ~ 8 using new JWST NIRCam medium-band observations over the HUDF/XDF. Rychard J.. Bouwens. Monthly Notices of the Royal Astronomical Society . 2023 . 523 . 1036–1055 . etal. 2211.02607. 10.1093/mnras/stad1145 . free .
  56. Giulia. Rodighiero. Giulia Rodighiero. etal. JWST unveils heavily obscured (active and passive) sources up to z 13. Monthly Notices of the Royal Astronomical Society: Letters. 518. 1. L19–L24. January 2023. 10.1093/mnrasl/slac115 . free . 2208.02825. 2023MNRAS.518L..19R.
  57. Lily. Whitler. etal. On the ages of bright galaxies 500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST. Monthly Notices of the Royal Astronomical Society. December 2022. 519 . 1 . 157–171 . 10.1093/mnras/stac3535. free . 2208.01599. 2023MNRAS.519..157W.
  58. 2013ApJ...762...32C . CLASH: Three Strongly Lensed Images of a Candidate z ~ 11 Galaxy . The Astrophysical Journal . 762 . 1 . 32 . 2013 . 10.1088/0004-637x/762/1/32. 1211.3663 . Coe . Dan . Zitrin . Adi . Carrasco . Mauricio . Shu . Xinwen . Zheng . Wei . Postman . Marc . Bradley . Larry . Koekemoer . Anton . Bouwens . Rychard . Broadhurst . Tom . Monna . Anna . Host . Ole . Moustakas . Leonidas A. . Ford . Holland . Moustakas . John . Van Der Wel . Arjen . Donahue . Megan . Rodney . Steven A. . Benítez . Narciso . Jouvel . Stephanie . Seitz . Stella . Kelson . Daniel D. . Rosati . Piero . 119114237 .
  59. JWST Reveals a Possible z ~ 11 Galaxy Merger in Triply Lensed MACS0647–JD. Tiger Yu-Yang. Hsiao. The Astrophysical Journal Letters . 2023 . 949 . 2 . L34 . etal. 2210.14123. 10.3847/2041-8213/acc94b . 2023ApJ...949L..34H . 253107903 . free .
  60. Two Remarkably Luminous Galaxy Candidates at z ≈ 10 − 12 Revealed by JWST. Rohan P.. Naidu. etal. The Astrophysical Journal Letters. 940. 1. L14. 11. 10.3847/2041-8213/ac9b22. 2207.09434. 2022ApJ...940L..14N. November 2022. 250644267 . free .
  61. ALMA Observation of a z ≳ 10 Galaxy Candidate Discovered with JWST. Ilsang. Yoon. The Astrophysical Journal . etal. 2210.08413. 2023. 950 . 1 . 61 . 10.3847/1538-4357/acc94d . 2023ApJ...950...61Y . free .
  62. 1801.03103 . A Candidate z~10 Galaxy Strongly Lensed into a Spatially Resolved Arc. The Astrophysical Journal. 864. L22. Salmon. Brett. Coe. Dan. Bradley. Larry. Bradač. Marusa. Huang. Kuang-Han. Strait. Victoria. Oesch. Pascal. Paterno-Mahler. Rachel. Zitrin. Adi. Acebron. Ana. Cibirka. Nathália. Kikuchihara. Shotaro. Oguri. Masamune. Brammer. Gabriel B. Sharon. Keren. Trenti. Michele. Avila. Roberto J. Ogaz. Sara. Andrade-Santos. Felipe. Carrasco. Daniela. Cerny. Catherine. Dawson. William. Frye. Brenda L. Hoag. Austin. Jones. Christine. Mainali. Ramesh. Ouchi. Masami. Rodney. Steven A. Stark. Daniel. Umetsu. Keiichi. 2018. 10.3847/2041-8213/aadc10. 78087820. free.
  63. Web site: Hubble Finds Distant Galaxy Through Cosmic Magnifying Glass . NASA. 23 April 2015 .
  64. 10.1088/2041-8205/793/1/L12 . 793 . 1 . A Geometrically Supported z ~ 10 Candidate Multiply Imaged by the Hubble Frontier Fields Cluster A2744 . The Astrophysical Journal . L12 . 1407.3769 . 2014ApJ...793L..12Z . 2014 . Zitrin . Adi . Zheng . Wei . Broadhurst . Tom . Moustakas . John . Lam . Daniel . Shu . Xinwen . Huang . Xingxing . Diego . Jose M. . Ford . Holland . Lim . Jeremy . Bauer . Franz E. . Infante . Leopoldo . Kelson . Daniel D. . Molino . Alberto . 43853349 .
  65. Web site: NASA Telescopes Spy Ultra-Distant Galaxy. NASA .
  66. Zheng . W. . Postman . M. . Zitrin . A. . Moustakas . J. . Shu . X. . Jouvel . S. . Høst . O. . Molino . A. . Bradley . L. . Coe . 10.1038/nature11446 . D. . Moustakas . L. A. . Carrasco . M. . Ford . H. . Benítez . N. . Lauer . T. R. . Seitz . S. . Bouwens . R. . Rychard Bouwens. Koekemoer . A. . Medezinski . E. . Bartelmann . M. . Broadhurst . T. . Donahue . M. . Megan Donahue . Grillo . C. . Infante . L. . Jha . S. W. . Kelson . D. D. . Lahav . O. . Lemze . D. . Melchior . P. . Meneghetti . M. . A magnified young galaxy from about 500 million years after the Big Bang . Nature . 489 . 7416 . 406–408 . 2012 . 22996554 . 1204.2305 . 2012Natur.489..406Z . 4415218 .
  67. Penn State Science, "Cosmic Explosion is New Candidate for Most Distant Object in the Universe", Derek. B. Fox, Barbara K. Kennedy, 25 May 2011
  68. Space Daily, Explosion Helps Researcher Spot Universe's Most Distant Object, 27 May 2011
  69. Web site: ESA Science & Technology: The Hubble eXtreme Deep Field (annotated) .
  70. Web site: Dim galaxy is most distant object yet found . David Shiga . New Scientist.
  71. 2013MNRAS.430.3314B . VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman & . Monthly Notices of the Royal Astronomical Society . 430 . 4 . 3314 . Bunker . Andrew J. . Caruana . Joseph . Wilkins . Stephen M. . Stanway . Elizabeth R. . Lorenzoni . Silvio . Lacy . Mark . Jarvis . Matt J. . Hickey . Samantha . 2013 . 10.1093/mnras/stt132. free . 1301.4477 .
  72. Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Survey: A Candidate Protocluster at Redshift z ≈ 8. The Astrophysical Journal . 746 . 1 . 55 . Trenti . M. . Bradley . L. D. . Stiavelli . M. . Shull . J. M. . Oesch . P. . Bouwens . R. J. . Rychard Bouwens. Munoz . J. A. . Romano-Diaz . E. . Treu . T. . Shlosman . I. . Carollo . C. M. . C. Marcella Carollo. 2011 . 1110.0468 . 10.1088/0004-637X/746/1/55 . 2012ApJ...746...55T . 119294290 .
  73. 1604.07404 . 10.3847/0004-637X/828/1/56 . Discovery of a galaxy cluster with a violently starbursting core at z=2.506 . The Astrophysical Journal . 828 . 1 . 2016 . Wang . Tao . Elbaz . David . Daddi . Emanuele . Finoguenov . Alexis . Liu . Daizhong . Schrieber . Corenin . Martin . Sergio . Strazzullo . Veronica . Valentino . Francesco . van Der Burg . Remco . Zanella . Anita . Cisela . Laure . Gobat . Raphael . Le Brun . Amandine . Pannella . Maurilio . Sargent . Mark . Shu . Xinwen . Tan . Qinghua . Cappelluti . Nico . Li . Xanxia . 56. 2016ApJ...828...56W . 8771287 . free .
  74. 1806.06073. The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS. Cucciati. O.. Lemaux. B. C.. Zamorani. G.. Le Fevre. O.. Tasca. L. A. M.. Hathi. N. P.. Lee. K-G.. Bardelli. S.. Cassata. P.. Garilli. B.. Le Brun. V.. Maccagni. D.. Pentericci. L.. Thomas. R.. Vanzella. E.. Zucca. E.. Lubin. L. M.. Amorin. R.. Cassara'. L. P.. Cimatti. A.. Talia. M.. Vergani. D.. Koekemoer. A.. Pforr. J.. Salvato. M.. Astronomy & Astrophysics. 2018. 619. A49. 10.1051/0004-6361/201833655. 2018A&A...619A..49C. 119472428.
  75. Early results from GLASS-JWST. XVIII: A spectroscopically confirmed protocluster 650 million years after the Big Bang. Morishita, Takahiro . Roberts-Borsani, Guido . Treu, Tommaso . Brammer, Gabriel . Mason, Charlotte A. . Trenti, Michele . Vulcani, Benedetta . Wang, Xin . Acebron, Ana . Bahé, Yannick . Bergamini, Pietro . Boyett, Kristan . Bradac, Marusa . Calabrò, Antonello . Castellano, Marco . Chen, Wenlei . De Lucia, Gabriella . Filippenko, Alexei V. . Fontana, Adriano . Glazebrook, Karl . Grillo, Claudio . Henry, Alaina . Jones, Tucker . Kelly, Patrick L. . Koekemoer, Anton M. . Leethochawalit, Nicha . Lu, Ting-Yi . Marchesini, Danilo . Mascia, Sara . Mercurio, Amata . Merlin, Emiliano . Metha, Benjamin . Nanayakkara, Themiya . Nonino, Mario . Paris, Diego . Pentericci, Laura . Santini, Paola . Strait, Victoria . Vanzella, Eros . Windhorst, Rogier A. . Rosati, Piero . Xie, Lizhi . 30 January 2023. 2211.09097. Astrophysical Journal Letters . 947 . 2 . 10.3847/2041-8213/acb99e . 2023ApJ...947L..24M . 253553396 . free .
  76. NASA, "New Gamma-Ray Burst Smashes Cosmic Distance Record", 28 April 2009
  77. Science Codex, "GRB 090429B – most distant gamma-ray burst yet", NASA/Goddard, 27 May 2011
  78. Welch, Brian . et al. . A highly magnified star at redshift 6.2 . 30 March 2022 . . 603 . 7903 . 815–818 . 10.1038/s41586-022-04449-y . 35354998 . 2209.14866 . 2022Natur.603..815W . 247842625 . 30 March 2022 .
  79. News: Gianopoulos . Andrea . Record Broken: Hubble Spots Farthest Star Ever Seen . 30 March 2022 . . 30 March 2022 .
  80. Camille M. Carlisle . The Most Distant Star Ever Seen? . Sky and Telescope . 12 April 2013.
  81. 10.1038/s41550-018-0430-3 . Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens . 2018 . Kelly . Patrick L. . Diego . Jose M. . Rodney . Steven . Kaiser . Nick . Broadhurst . Tom . Zitrin . Adi . Treu . Tommaso . Pérez-González . Pablo G. . Morishita . Takahiro . Jauzac . Mathilde . Selsing . Jonatan . Oguri . Masamune . Pueyo . Laurent . Ross . Timothy W. . Filippenko . Alexei V. . Smith . Nathan . Hjorth . Jens . Cenko . S. Bradley . Wang . Xin . Howell . D. Andrew . Richard . Johan . Frye . Brenda L. . Jha . Saurabh W. . Foley . Ryan J. . Norman . Colin . Bradac . Marusa . Zheng . Weikang . Brammer . Gabriel . Benito . Alberto Molino . Cava . Antonio . Nature Astronomy . 2 . 4 . 334–342 . 1706.10279 . 2018NatAs...2..334K . 119412560 . 1 .
  82. Lamiya. Mowla. etal. The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST. The Astrophysical Journal Letters. October 2022. 937. 2. L35. 9. free. 10.3847/2041-8213/ac90ca. 2208.02233. 2022ApJ...937L..35M.
  83. 2103.03879. 10.3847/1538-4357/abe710. Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years. 2021. Connor. Thomas. Bañados. Eduardo. Stern. Daniel. Carilli. Chris. Fabian. Andrew. Momjian. Emmanuel. Rojas-Ruiz. Sofía. Decarli. Roberto. Farina. Emanuele Paolo. Mazzucchelli. Chiara. Earnshaw. Hannah P.. The Astrophysical Journal. 911. 2. 120. 2021ApJ...911..120C. 232148026 . free .
  84. https://www.nasa.gov/mission_pages/chandra/images/gigantic-jet-spied-from-black-hole-in-early-universe.html NASA.gov
  85. SpaceDaily, "Record-Setting X-ray Jet Discovered", 30 November 2012 (accessed 4 December 2012)
  86. ESA, "Artist's impression of the X-ray binary XMMU J004243.6+412519", 12 December 2012 (accessed 18 December 2012)
  87. e! Science News, "XMMU J004243.6+412519: Black-Hole Binary At The Eddington Limit", 12 December 2012 (accessed 18 December 2012)
  88. SpaceDaily, "Microquasar found in neighbor galaxy, tantalizing scientists", 17 December 2012 (accessed 18 December 2012)
  89. Ouchi . Masami . Ono . Yoshiaki . Egami . Eiichi . Saito . Tomoki . Oguri . Masamune . McCarthy . Patrick J. . Farrah . Duncan . Kashikawa . Nobunari . Momcheva . Ivelina . Shimasaku . Kazuhiro . Nakanishi . Kouichiro . Furusawa . Hisanori . Akiyama . Masayuki . Dunlop . James S. . Mortier . Angela M. J. . 2009-05-01 . Discovery of a Giant Lyα Emitter Near the Reionization Epoch . The Astrophysical Journal . 696 . 2 . 1164–1175 . 10.1088/0004-637X/696/2/1164 . 0807.4174 . 2009ApJ...696.1164O . 15246638 . 0004-637X.
  90. News: Giant Mystery Blob Discovered Near Dawn of Time. Hsu. Jeremy. 2009-04-22. SPACE.com. 2009-04-24.
  91. USA Today, "Smallest, most distant planet outside solar system found", Malcolm Ritter, 25 January 2006 (accessed 5 August 2010)
  92. Encyclopedia: Notes for star PA-99-N2 . https://web.archive.org/web/20100206051747/http://exoplanet.eu/star.php?st=PA-99-N2 . dead . February 6, 2010 . Schneider, J. . . 2010-08-06.
  93. Exoplaneten.de, "The Microlensing Event of Q0957+561" (accessed 5 August 2010)
  94. Schild . R.E. . 1996 . Microlensing Variability of the Gravitationally Lensed Quasar Q0957+561 A, B . Astrophysical Journal . 464 . 125 . 10.1086/177304 . 1996ApJ...464..125S.
  95. 2012Natur.491..228C . Superluminous supernovae at redshifts of 2.05 and 3.90 . Nature . 491 . 7423 . 228–31 . Cooke . Jeff . Sullivan . Mark . Gal-Yam . Avishay . Barton . Elizabeth J. . Carlberg . Raymond G. . Ryan-Weber . Emma V.. Emma Ryan-Weber . Horst . Chuck . Omori . Yuuki . Díaz . C. Gonzalo . 2012 . 10.1038/nature11521 . 23123848. 1211.2003 . 4397580 .
  96. Web site: Record-breaking supernova in the CANDELS Ultra Deep Survey: before, after, and difference . www.spacetelescope.org.
  97. Science Newsline, "The Farthest Supernova Yet for Measuring Cosmic History", Lawrence Berkeley National Laboratory, 9 January 2013 (accessed 10 January 2013)
  98. Mike Wall, "Most Distant 'Standard Candle' Star Explosion Found", Space.com, 9 January 2013 (accessed 10 January 2013)
  99. Astrophysical Journal Supplement . Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results . 180 . 2 . 225–245 . 2009 . 10.1088/0067-0049/180/2/225 . 2009ApJS..180..225H . 0803.0732 . 3629998 . Hinshaw . G. . Weiland . J. L. . Hill . R. S. . Odegard . N. . Larson . D. . Bennett . C. L. . Dunkley . J. . Gold . B. . Greason . M. R. . Jarosik . N. . Komatsu . E. . Nolta . M. R. . Page . L. . Spergel . D. N. . Wollack . E. . Halpern . M. . Kogut . A. . Limon . M. . Meyer . S. S. . Tucker . G. S. . Wright . E. L. .
  100. [Redshift]
  101. Web site: Jonathan Amos . Hubble sets new cosmic distance record . BBC News . 3 March 2016 .
  102. News: Ancient Galaxy Is Most Distant Ever Found . 5 August 2015 . Mike Wall . Space.com .
  103. News: A new record: Keck Observatory measures most distant galaxy . 6 August 2015 . W. M. Keck Observatory . Astronomy Now .
  104. News: The Farthest Object in the Universe . Mario De Leo Winkler . 15 July 2015 . Huffington Post .
  105. New Scientist, "Most distant object in the universe spotted", Rachel Courtland, 22:32 27 April 2009 . Retrieved 2009-11-11.
  106. New Scientist, "First generation of galaxies glimpsed forming", 'David Shiga ', 19:01 13 September 2006 (accessed 2009/11/11)
  107. 10.1038/nature05104 . 16971942 . 2006 . Iye . M . A galaxy at a redshift z = 6.96 . Nature . 443 . 7108 . 186–8 . Ota . K . Kashikawa . N . Furusawa . H . Hashimoto . T . Hattori . T . Matsuda . Y . Morokuma . T . Ouchi . M . Shimasaku . K . 2006Natur.443..186I. astro-ph/0609393 . 2876103 .
  108. Taniguchi . Yoshi . Star Forming Galaxies at z > 5 . Proceedings of the International Astronomical Union . 23 June 2008 . 3 . S250 . 429–436 . 0804.0644 . 10.1017/S1743921308020796. 2008IAUS..250..429T . 198472 .
  109. The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6 . 2005PASJ...57..165T . 10.1093/pasj/57.1.165 . Publications of the Astronomical Society of Japan . 57 . 165–182 . 2005 . Taniguchi . Yoshiaki . Ajiki . Masaru . Nagao . Tohru . Shioya . Yasuhiro . Murayama . Takashi . Kashikawa . Nobunari . Kodaira . Keiichi . Kaifu . Norio . Ando . Hiroyasu . Karoji . Hiroshi . Akiyama . Masayuki . Aoki . Kentaro . Doi . Mamoru . Fujita . Shinobu S. . Furusawa . Hisanori . Hayashino . Tomoki . Iwamuro . Fumihide . Iye . Masanori . Kobayashi . Naoto . Kodama . Tadayuki . Komiyama . Yutaka . Matsuda . Yuichi . Miyazaki . Satoshi . Mizumoto . Yoshihiko . Morokuma . Tomoki . Motohara . Kentaro . Nariai . Kyoji . Ohta . Koji . Ohyama . Youichi . Okamura . Sadanori . 29. astro-ph/0407542 .
  110. BBC News, Most distant galaxy detected, Tuesday, 25 March 2003, 14:28 GMT
  111. SpaceRef, Subaru Telescope Detects the Most Distant Galaxy Yet and Expects Many More, Monday, March 24, 2003
  112. astro-ph/0301096 . Kodaira . K. . The Discovery of Two Lyman$α$ Emitters Beyond Redshift 6 in the Subaru Deep Field . Publications of the Astronomical Society of Japan . 55 . 2 . L17 . Taniguchi . Y. . Kashikawa . N. . Kaifu . N. . Ando . H. . Karoji . H. . Ajiki . Masaru . Akiyama . Masayuki . Aoki . Kentaro . Doi . Mamoru . Fujita . Shinobu S. . Furusawa . Hisanori . Hayashino . Tomoki . Imanishi . Masatoshi . Iwamuro . Fumihide . Iye . Masanori . Kawabata . Koji S. . Kobayashi . Naoto . Kodama . Tadayuki . Komiyama . Yutaka . Kosugi . George . Matsuda . Yuichi . Miyazaki . Satoshi . Mizumoto . Yoshihiko . Motohara . Kentaro . Murayama . Takashi . Nagao . Tohru . Nariai . Kyoji . Ohta . Kouji . Ohyama . Youichi . 2003 . 10.1093/pasj/55.2.L17 . 29. 2003PASJ...55L..17K .
  113. New Scientist, New record for Universe's most distant object, 17:19 14 March 2002
  114. BBC News, Far away stars light early cosmos, Thursday, 14 March 2002, 11:38 GMT
  115. 10.1086/340424 . 568 . A Redshift z = 6.56 Galaxy behind the Cluster Abell 370 . 2002 . The Astrophysical Journal . L75–L79 . Hu . E. M. . 2 . astro-ph/0203091 . 2002ApJ...568L..75H. free .
  116. Web site: K2.1 HCM 6A — Discovery of a redshift z = 6.56 galaxy lying behind the cluster Abell 370 . Hera.ph1.uni-koeln.de . 2008-04-14 . 2010-10-22 . https://web.archive.org/web/20110518140741/http://hera.ph1.uni-koeln.de/~heintzma/U/Lens.htm . 2011-05-18 .
  117. astro-ph/0112075 . Pentericci . L. . VLT observations of the z = 6.28 quasar SDSS 1030+0524 . The Astronomical Journal . 123 . 5 . 2151 . Fan . X. . Rix . H. W. . Strauss . M. A. . Narayanan . V. K. . Richards . G T. . Schneider . D. P. . Krolik . J. . Heckman . T. . Brinkmann . J. . Lamb . D. Q. . Szokoly . G. P. . 2002 . 10.1086/340077 . 2002AJ....123.2151P. 119041760 .
  118. The Astrophysical Journal, 578:702–707, 20 October 2002, A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524
  119. 10.1086/375547 . Probing the Ionization State of the Universe atz>6 . The Astronomical Journal . 126 . 1 . 1–14 . 2003 . White . Richard L. . Becker . Robert H. . Fan . Xiaohui . Strauss . Michael A. . 2003AJ....126....1W. astro-ph/0303476 . 51505828 .
  120. 2004ApJ...611L..13F . 10.1086/423669 . The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524 . The Astrophysical Journal . 611 . 1 . L13–L16 . 2004 . Farrah . D. . Priddey . R. . Wilman . R. . Haehnelt . M. . McMahon . R.. astro-ph/0406561 . 14854831 .
  121. PennState – Eberly College of Science – Science Journal – Summer 2000 – Vol. 17, No. 1 International Team of Astronomers Finds Most Distant Object
  122. The Astrophysical Journal Letters, 522:L9–L12, 1999 September 1, An Extremely Luminous Galaxy at z = 5.74
  123. PennState Eberly College of Science, Discovery Announced of Two Most Distant Objects, June 2001
  124. SDSS, Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe, June 2001
  125. PennState Eberly College of Science, X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite, Dec 2000
  126. UW-Madison Astronomy, Confirmed High Redshift (z > 5.5) Galaxies – (Last Updated 10th February 2005)
  127. SPACE.com, Most Distant Object in Universe Comes Closer, 01 December 2000
  128. The Astrophysical Journal Letters, 522:L9–L12, September 1, 1999, An Extremely Luminous Galaxy at z = 5.74
  129. Publications of the Astronomical Society of the Pacific, 111: 1475–1502, 1999 December; Search Techniques for Distant Galaxies; Introduction
  130. New York Times, Peering Back in Time, Astronomers Glimpse Galaxies Aborning, October 20, 1998
  131. Astronomy Picture of the Day, A Baby Galaxy, March 24, 1998
  132. astro-ph/9803137 . Dey . Arjun . A Galaxy at z = 5.34 . The Astrophysical Journal . 498 . 2 . L93 . Spinrad . Hyron . Stern . Daniel . Graham . James R. . Chaffee . Frederic H. . 1998 . 10.1086/311331 . 1998ApJ...498L..93D.
  133. Web site: A New Most Distant Object: z = 5.34 . Astro.ucla.edu . 2010-10-22.
  134. Astronomy Picture of the Day, Behind CL1358+62: A New Farthest Object, July 31, 1997
  135. 1997ApJ...486L..75F . 10.1086/310844 . A Pair of Lensed Galaxies at z = 4.92 in the Field of CL 1358+62 . The Astrophysical Journal . 486 . 2 . L75 . 1997 . Franx . Marijn . Illingworth . Garth D. . Kelson . Daniel D. . Van Dokkum . Pieter G. . Tran . Kim-Vy. astro-ph/9704090 . 14502310 .
  136. 10.1023/a:1017052809781 . Galaxies at High Redshift . 1999Ap&SS.269..165I . 269/270 . 1999 . Astrophysics and Space Science . 165–181 . Illingworth . Garth . astro-ph/0009187 . 119363931 .
  137. Schneider . Donald P. . Schmidt . Maarten . Gunn . James E. . PC 1247 + 3406 - an optically selected quasar with a redshift of 4.897 . The Astronomical Journal . September 1991 . 102 . 837 . 10.1086/115914. 1991AJ....102..837S .
  138. 1994AJ....108.1147S . Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4 . The Astronomical Journal . 108 . 1147 . Smith . J. D. . Djorgovski . S. . Thompson . D. . Brisken . W. F. . Neugebauer . G. . Matthews . K. . Meylan . G. . Piotto . G. . Suntzeff . N. B. . 1994 . 10.1086/117143.
  139. New Scientist, issue 1842, 10 October 1992, page 17, Science: Infant galaxy's light show
  140. FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar December 8, 1998
  141. 1998MNRAS.294L...7H . Discovery of radio-loud quasars with z = 4.72 and z = 4.01 . Monthly Notices of the Royal Astronomical Society . 294 . 1 . L7–L12 . Hook . Isobel M. . McMahon . Richard G. . 1998 . 10.1046/j.1365-8711.1998.01368.x. free . astro-ph/9801026 .
  142. 1991AJ....101....5T . Quasars and galaxy formation. I – the Z greater than 4 objects . Astronomical Journal . 101 . 5 . Turner . Edwin L. . 1991 . 10.1086/115663.
  143. SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 -- Quasar
  144. 10.1111/j.1749-6632.1991.tb32157.x . Young Galaxies . Annals of the New York Academy of Sciences . 647 . 1 Texas/ESO–Cer . 31–41 . 1991 . Cowie . Lennox L. . 1991NYASA.647...31C. 222074763 .
  145. New York Times, Peering to Edge of Time, Scientists Are Astonished, November 20, 1989
  146. 1987Natur.330..453W . 10.1038/330453a0 . Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field . Nature . 330 . 6147 . 453 . 1987 . Warren . S. J. . Hewett . P. C. . Osmer . P. S. . Irwin . M. J.. 4352819 .
  147. 1988Ap.....29..657L . 10.1007/BF01005972 . Absorption spectra of quasars . Astrophysics . 29 . 2 . 657–671 . 1989 . Levshakov . S. A.. 122978350 .
  148. New York Times, Objects Detected in Universe May Be the Most Distant Ever Sighted, January 14, 1988
  149. New York Times, Astronomers Peer Deeper Into Cosmos, May 10, 1988
  150. [SIMBAD]
  151. 1987ApJ...321L...7S . PC 0910 + 5625 – an optically selected quasar with a redshift of 4.04 . Astrophysical Journal . 321 . L7 . Schmidt . Maarten . Schneider . Donald P. . Gunn . James E. . 1987 . 10.1086/184996.
  152. SIMBAD, Object query : PC 0910+5625, QSO B0910+5625 -- Quasar
  153. 1987Natur.325..131W . First observation of a quasar with a redshift of 4 . Nature . 325 . 6100 . 131 . Warren . S. J. . Hewett . P. C. . Irwin . M. J. . McMahon . R. G. . Bridgeland . M. T. . Bunclark . P. S. . Kibblewhite . E. J. . 1987 . 10.1038/325131a0. 4335291 .
  154. SIMBAD, Object query : Q0046-293, QSO J0048-2903 -- Quasar
  155. SIMBAD, Object query : Q1208+1011, QSO B1208+1011 – Quasar
  156. New Scientist, Quasar doubles help to fix the Hubble constant, 16 November 1991
  157. Orwell Astronomical Society (Ipswich) – OASI; Archived Astronomy News Items, 1972–1997
  158. SIMBAD, Object query : PKS 2000-330, QSO J2003-3251 – Quasar
  159. SIMBAD, Object query : OQ172, QSO B1442+101 – Quasar
  160. OSU Big Ear, History of the OSU Radio Observatory
  161. Time Magazine, The Edge of Night, Monday, Apr. 23, 1973
  162. SIMBAD, Object query : OH471, QSO B0642+449 – Quasar
  163. 1990RPPh...53.1095W . 10.1088/0034-4885/53/8/003 . The detection of high-redshift quasars . Reports on Progress in Physics . 53 . 8 . 1095 . 1990 . Warren . S J . Hewett . P C. 250880776 .
  164. Web site: QUASARS – THREE YEARS LATER . 2010-02-17 . 2017-01-18 . https://web.archive.org/web/20170118162311/http://www.reciprocalsystem.com/ce/q3y.htm . dead .
  165. The Structure of the Physical Universe, Volume III – The Universe of Motion,CHAPTER 23 – Quasar Redshifts, by Dewey Bernard Larson, 1984
  166. 1971ApJ...163..235B . Some Inferences from Spectrophotometry of Quasi-Stellar Sources . Astrophysical Journal . 163 . 235 . Bahcall . John N. . Oke . J. B. . 1971 . 10.1086/150762. free .
  167. 1970Natur.226..532L . 10.1038/226532a0 . The Unusually Large Redshift of 4C 05.34 . Nature . 226 . 5245 . 532 . 1970 . Lynds . R. . Wills . D. . 16057373. 28297458 . free .
  168. SIMBAD, Object query : 5C 02.56, 7C 105517.75+495540.95 – Quasar
  169. 1968ApJ...154L..41B . The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies . Astrophysical Journal . 154 . L41 . Burbidge . Geoffrey . 1968 . 10.1086/180265. free .
  170. Time Magazine, A Farther-Out Quasar, Friday, Apr. 07, 1967
  171. SIMBAD, Object query : QSO B0237-2321, QSO B0237-2321 – Quasar
  172. 1967ApJ...147..851B . On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects . Astrophysical Journal . 147 . 851 . Burbidge . Geoffrey . 1967 . 10.1086/149072.
  173. SIMBAD, Object query : Q1116+12, 4C 12.39 – Quasar
  174. Time Magazine, The Man on the Mountain, Friday, Mar. 11, 1966
  175. SIMBAD, Object query : Q0106+01, 4C 01.02 – Quasar
  176. Time Magazine, Toward the Edge of the Universe, Friday, May. 21, 1965
  177. Time Magazine, The Quasi-Quasars, Friday, Jun. 18, 1965
  178. The Cosmic Century: A History of Astrophysics and Cosmology p. 379 by Malcolm S. Longair – 2006
  179. 1965ApJ...141.1295S . Large Redshifts of Five Quasi-Stellar Sources . Astrophysical Journal . 141 . 1295 . Schmidt . Maarten . 1965 . 10.1086/148217.
  180. http://www.astro.caltech.edu/~george/ay21/qso.txt The Discovery of Radio Galaxies and Quasars
  181. 1965qssg.conf..269S . Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147 . Quasi-Stellar Sources and Gravitational Collapse . 269 . Schmidt . Maarten . Matthews . Thomas A. . 1965.
  182. 1992AJ....103.1451S . Radio properties of optically selected high-redshift quasars. I – VLA observations of 22 quasars at 6 CM . Astronomical Journal . 103 . 1451 . Schneider . Donald P. . Van Gorkom . J. H. . Schmidt . Maarten . Gunn . James E. . 1992 . 10.1086/116159.
  183. Time Magazine . Astronomy: Finding the Fastest Galaxy: 76,000 Miles per Second . April 10, 1964 . 83 . 15 .
  184. 1964ApJ...139..781S . Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147 . Astrophysical Journal . 139 . 781 . Schmidt . Maarten . Matthews . Thomas A. . 1964 . 10.1086/147815.
  185. Web site: The Discovery of Radio Galaxies and Quasars . 2010-10-22.
  186. 1993ARA&A..31..639M. 10.1146/annurev.aa.31.090193.003231 . High Redshift Radio Galaxies . Annual Review of Astronomy and Astrophysics . 31 . 639–688 . 1993 . McCarthy . Patrick J..
  187. 1961ApJ...133..355S . The Ability of the 200-INCH Telescope to Discriminate Between Selected World Models . Astrophysical Journal . 133 . 355 . Sandage . Allan . 1961 . 10.1086/147041.
  188. 1953MNRAS.113..658H . The law of red shifts (George Darwin Lecture) . Monthly Notices of the Royal Astronomical Society . 113 . 6 . 658–666 . Hubble . E. P. . 1953 . 10.1093/mnras/113.6.658. free .
  189. Sandage . Allan . Observational Tests of World Models: 6.1. Local Tests for Linearity of the Redshift-Distance Relation . Annu. Rev. Astron. Astrophys. . 1988 . 26 . 561–630 .
  190. 1956AJ.....61...97H . Redshifts and magnitudes of extragalactic nebulae . Astronomical Journal . 61 . 97 . Humason . M. L. . Mayall . N. U. . Sandage . A. R. . 1956 . 10.1086/107297.
  191. 1953Obs....73...97. . 1053 May 8 meeting of the Royal Astronomical Society . The Observatory . 73 . 97 . 1953.
  192. 1958ASPL....7..393M . From Atoms to Galaxies . Astronomical Society of the Pacific Leaflets . 7 . 349 . 393 . Merrill . Paul W. . 1958.
  193. Humason . M. L. . The Apparent Radial Velocities of 100 Extra-Galactic Nebulae . The Astrophysical Journal . January 1936 . 83 . 10 . 10.1086/143696 . 1936ApJ....83...10H. free .
  194. "The First 50 Years At Palomar: 1949–1999; The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics'; 5.2.1. The Mount Wilson Years; Annu. Rev. Astron. Astrophys. 1999. 37: 445–486
  195. Chant . C. A. . Notes and Queries (Doings at Mount Wilson-Ritchey's Photographic Telescope-Infra-red Photographic Plates) . Journal of the Royal Astronomical Society of Canada . 1 April 1932 . 26 . 180 . 1932JRASC..26..180C.
  196. Humason . Milton L. . Apparent Velocity-Shifts in the Spectra of Faint Nebulae . The Astrophysical Journal . July 1931 . 74 . 35 . 10.1086/143287 . 1931ApJ....74...35H.
  197. Hubble . Edwin . Humason . Milton L. . The Velocity-Distance Relation among Extra-Galactic Nebulae . The Astrophysical Journal . July 1931 . 74 . 43 . 10.1086/143323 . 1931ApJ....74...43H.
  198. Humason . M. L. . The Large Apparent Velocities of Extra-Galactic Nebulae . Leaflet of the Astronomical Society of the Pacific . 1 January 1931 . 1 . 37 . 149 . 1931ASPL....1..149H.
  199. 1930ApJ....71..351H . The Rayton short-focus spectrographic objective . Astrophysical Journal . 71 . 351 . Humason . M. L. . 1930 . 10.1086/143255. free .
  200. 1929PASP...41..244. . The Berkeley Meeting of the Astronomical Society of the Pacific, June 20–21, 1929 . Publications of the Astronomical Society of the Pacific . 41 . 242 . 244 . 1929 . 10.1086/123945. free .
  201. From the Proceedings of the National Academy of Sciences; Volume 15 : March 15, 1929 : Number 3; The Large Radial Velocity of N. G. C. 7619; January 17, 1929
  202. The Journal of the Royal Astronomical Society of Canada / Journal de la Société Royale D'astronomie du Canada; Vol. 83, No. 6 December 1989 Whole No. 621; EDWIN HUBBLE 1889–1953
  203. 1996PASP..108.1073T . H_0: The Incredible Shrinking Constant, 1925–1975 . Publications of the Astronomical Society of the Pacific . 108 . 1073 . Trimble . Virginia . 1996 . 10.1086/133837. 122165424 .
  204. 1920BHarO.739....1B . Comet Skjellerup . Harvard College Observatory Bulletin . 739 . 1 . Bailey . S. I. . 1920.
  205. New York Times, DREYER NEBULA NO. 584 Inconceivably Distant; Dr. Slipher Says the Celestial Speed Champion Is 'Many Millions of Light Years' Away.; January 19, 1921, Wednesday
  206. New York Times, Nebula Dreyer Breaks All Sky Speed Records; Portion of the Constellation of Cetus Is Rushing Along at Rate of 1,240 Miles a Second.; January 18, 1921, Tuesday
  207. National Academy of Sciences; Biographical Memoirs: V. 52 – Vesto Melvin Slipher;
  208. Hawera & Normanby Star, "Items of Interest", 29 December 1910, Volume LX, page 3 . Retrieved 25 March 2010.
  209. Evening Star (San Jose), "Colossal Arcturus", Pittsburgh Dispatch, 10 June 1910 . Retrieved 25 March 2010.
  210. Nelson Evening Mail, "British Bloodthirstiness", 2 November 1891, Volume XXV, Issue 230, Page 3 . Retrieved 25 March 2010.
  211. "Handbook of astronomy", Dionysius Lardner & Edwin Dunkin, Lockwood & Co. (1875), p.121
  212. "The Three Heavens", Josiah Crampton, William Hunt and Company (1876), p.164
  213. , Volume 4, Alexander von Humboldt, J. G. Cotta (1858), p.195
  214. "Outlines of Astronomy", John F. W. Herschel, Longman & Brown (1849), ch. 'Parallax of Stars', p.551 (section 851)
  215. The Sidereal Messenger, "Of the Precession of the Equinoxes, Nutation of the Earth's Axis, And Aberration of Light", Vol.1, No. 12, April 1847: 'Derby, Bradley, & Co.' Cincinnati
  216. The North American Review, "The Observatory at Pulkowa", FGW Struve, Volume 69 Issue 144 (July 1849)
  217. SEDS, "Friedrich Wilhelm Bessel (July 22, 1784 – March 17, 1846)" . Retrieved 11 November 2009.
  218. Harper's New Monthly Magazine, "Some Talks of an Astronomer", Simon Newcomb, Volume 0049 Issue 294 (November 1874), pp.827 (accessed 2009-Nov-11)
  219. Jensen, Joseph B. . Tonry, John L. . Barris, Brian J. . Thompson, Rodger I. . Liu, Michael C. . Rieke, Marcia J. . Ajhar, Edward A. . Blakeslee, John P. . Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations . Astrophysical Journal . February 2003 . 583 . 2 . 712–726 . 2003ApJ...583..712J . 10.1086/345430 . astro-ph/0210129 . 551714 .
  220. Book: Kepple, George Robert . Glen W. Sanner . The Night Sky Observer's Guide, Volume 1 . Willmann-Bell, Inc. . 1998 . 978-0-943396-58-3 . 18.
  221. Fodera-Serio, G. . Indorato, L. . Nastasi, P. . Hodierna's Observations of Nebulae and his Cosmology . Journal for the History of Astronomy . 16 . 1 . February 1985 . 1–36 . 1985JHA....16....1F . 10.1177/002182868501600101 . free .
  222. G. Gavazzi . A. Boselli . M. Scodeggio . D. Pierini . E. Belsole . amp . The 3D structure of the Virgo cluster from H-band Fundamental Plane and Tully-Fisher distance determinations . Monthly Notices of the Royal Astronomical Society . 1999 . 304 . 3 . 595–610 . 1999MNRAS.304..595G . 10.1046/j.1365-8711.1999.02350.x . free . astro-ph/9812275 . 41700753 .
  223. Book: Burnham, Robert Jr . Robert Burnham Jr . Burnham's Celestial Handbook: Volume Three, Pavo Through Vulpecula . Dover . 1978 . 2086–2088 . 978-0-486-23673-5 .
  224. Web site: The OBEY Survey – NGC 584 .
  225. Web site: Distance Results for NGC 0001 . NASA/IPAC Extragalactic Database . 2010-05-03.
  226. 1972Ap&SS..15..395F . On the Mass and Distance of the Quasi-Stellar Object 3C 273 . Astrophysics and Space Science . 15 . 3 . 395 . Falla . D. F. . Evans . A. . 1972 . 10.1007/BF00649767. 124870214 .
  227. http://www.aavso.org/vstar/vsots/spring05.shtml Variable Star Of The Season
  228. 1960ApJ...132..908M . A New Distant Cluster of Galaxies . Astrophysical Journal . 132 . 908 . Minkowski . R. . 1960 . 10.1086/146994.
  229. News: Exploding star is oldest object seen in universe . CNN . 2009-04-29 . 2010-10-22.
  230. GCN Circulars . 9198 . GRB 090423: Swift detection of a burst . 1 . Krimm, H. . etal . 2009. 2009GCN..9198....1K .