List of quasars explained

This article contains lists of quasars. More than a million quasars have been observed,[1] so any list on Wikipedia is necessarily a selection of them.

Proper naming of quasars are by Catalogue Entry, Qxxxx±yy using B1950 coordinates, or QSO Jxxxx±yyyy using J2000 coordinates. They may also use the prefix QSR. There are currently no quasars that are visible to the naked eye.

List of quasars

This is a list of exceptional quasars for characteristics otherwise not separately listed

QuasarNotes
Associated with a possible planet microlensing event in the gravitational lens galaxy that is doubling the Twin Quasar's image.
Proved interstellar scintillation due to the interstellar medium.
In 1965, Soviet astronomer Nikolai S. Kardashev declared that this quasar was sending coded messages from an alien civilization.[2]
CID-42Its supermassive black hole is being ejected and will one day become a displaced quasar.
TON 618TON 618 is a very distant and extremely luminous quasar—technically, a hyperluminous, broad-absorption line, radio-loud quasar—located near the North Galactic Pole in the constellation Canes Venatici.

List of named quasars

This is a list of quasars, with a common name, instead of a designation from a survey, catalogue or list.

QuasarOrigin of nameNotes
Twin QuasarFrom the fact that two images of the same quasar are produced by gravitational lensing.
Einstein CrossFrom the fact that gravitational lensing of the quasar forms a near perfect Einstein cross, a concept in gravitational lensing.
Triple QuasarFrom the fact that there are three bright images of the same gravitationally lensed quasar.There are actually four images; the fourth is faint.
CloverleafFrom its appearance having similarity to the leaf of a clover. It has been gravitationally lensed into four images, of roughly similar appearance.
Teacup GalaxyThe name comes from the shape of the extended emission, which is shaped like the handle of a teacup. The handle is a bubble shaped by quasar winds or small-scale radio jets.Low redshift, highly obscured type 2 quasar.

List of multiply imaged quasars

This is a list of quasars that as a result of gravitational lensing appear as multiple images on Earth.

QuasarImagesLensNotes
Twin Quasar2First gravitationally lensed object discovered
Triple Quasar (PG 1115+080) 4 Originally discovered as 3 lensed images, the fourth image is faint. It was the second gravitationally lensed quasar discovered.
Einstein Cross4Huchra's LensFirst Einstein Cross discovered
RX J1131-1231's quasar4RX J1131-1231's elliptical galaxyRX J1131-1231 is the name of the complex, quasar, host galaxy and lensing galaxy, together. The quasar's host galaxy is also lensed into a Chwolson ring about the lensing galaxy. The four images of the quasar are embedded in the ring image.
4[3] Brightest known high-redshift source of CO emission[4]
QSO B1359+1546CLASS B1359+154 and three more galaxiesFirst sextuply-imaged galaxy
SDSS J1004+41125Galaxy cluster at z = 0.68First quasar discovered to be multiply image-lensed by a galaxy cluster and currently the third largest quasar lens with the separation between images of 15[5] [6] [7]
SDSS J1029+26233Galaxy cluster at z = 0.6The current largest-separation quasar lens with 22.6 separation between furthest images[8] [9] [10]
SDSS J2222+27456Galaxy cluster at z = 0.49First sextuply-lensed galaxy[11] Third quasar discovered to be lensed by a galaxy cluster. Quasar located at z = 2.82[12]

List of visual quasar associations

This is a list of double quasars, triple quasars, and the like, where quasars are close together in line-of-sight, but not physically related.

QuasarsCountNotes
QSO 1548+115

4C 11.50 (z = 0.436)

QSO B1548+115B (z = 1.901)

2 [13] [14]
QSO 1146+1118[15]
z represents redshift, a measure of recessional velocity and inferred distance due to cosmological expansion

List of physical quasar groups

This is a list of binary quasars, trinary quasars, and the like, where quasars are physically close to each other.

QuasarsCountNotes
quasars of SDSS J0841+3921 protocluster4First quasar quartet discovered.[16] [17]
LBQS 1429-008 (QQQ 1432-0106) 3First quasar triplet discovered.
It was first discovered as a binary quasar, before the third quasar was found.[18]
QQ2345+007 (Q2345+007)

Q2345+007A

Q2345+007B

2 Originally thought to be a doubly imaged quasar, but actually a quasar couplet.[19]
QQQ J1519+06273 [20]

Large Quasar Groups

See main article: Large Quasar Group. Large quasar groups (LQGs) are bound to a filament of mass, and not directly bound to each other.

LQGCountNotes
Webster LQG
(LQG 1)
5First LQG discovered. At the time of its discovery, it was the largest structure known.[21] [22]
Huge-LQG
(U1.27)
73The largest structure known in the observable universe, as of 2013.[23] [24]

List of quasars with apparent superluminal jet motion

This is a list of quasars with jets that appear to be superluminal due to relativistic effects and line-of-sight orientation. Such quasars are sometimes referred to as superluminal quasars.

QuasarSuperluminalityNotes
3C 2794c First quasar discovered with superluminal jets[25] [26]
3C 1797.6cFifth discovered, first with double lobes[27]
3C 273This is also the first quasar ever identified[28]
3C 216
3C 345[29]
3C 380
4C 69.21
(Q1642+690, QSO B1642+690)
8C 1928+738
(Q1928+738, QSO J1927+73, Quasar J192748.6+735802)
PKS 0637-752
QSO B1642+690

Quasars that have a recessional velocity greater than the speed of light (c) are very common. Any quasar with z > 1 is receding faster than c, while z exactly equal to 1 indicates recession at the speed of light. Early attempts to explain superluminal quasars resulted in convoluted explanations with a limit of z = 2.326, or in the extreme z < 2.4. The majority of quasars lie between z = 2 and z = 5.

Firsts

TitleQuasarYearDataNotes
First quasar discovered3C 481960first radio source for which optical identification was found, that was a star-like looking object
First "star" discovered later found to be a quasar
First radio source discovered later found to be a quasar
First quasar identified3C 2731962first radio-"star" found to be at a high redshift with a non-stellar spectrum.
First radio-quiet quasarQSO B1246+377 (BSO 1) 1965 The first radio-quiet quasi-stellar objects (QSO) were called Blue Stellar Objects or BSO, because they appeared like stars and were blue in color. They also had spectra and redshifts like radio-loud quasi-stellar radio-sources (QSR), so became quasars.[30] [31] [32]
First host galaxy of a quasar discovered3C 481982
First quasar found to seemingly not have a host galaxyHE0450-2958 (Naked Quasar)2005Some disputed observations suggest a host galaxy, others do not.
First multi-core quasarPG 1302-1022014 Binary supermassive black holes within the quasar[33] [34]
First quasar containing a recoiling supermassive black holeSDSS J0927+29432008Two optical emission line systems separated by 2650 km/s
First gravitationally lensed quasar identifiedTwin Quasar1979 Lensed into 2 imagesThe lens is a galaxy known as YGKOW G1
First quasar found with a jet with apparent superluminal motion1971 [35] [36]
First quasar found with the classic double radio-lobe structure3C 471964
First quasar found to be an X-ray source3C 2731967[37]
First "dustless" quasar foundQSO J0303-0019 and QSO J0005-00062010 [38] [39] [40] [41] [42] [43] [44]
First Large Quasar Group discoveredWebster LQG
(LQG 1)
1982

Extremes

TitleQuasarDataNotes
Brightest3C 273Apparent magnitude of ~12.9Absolute magnitude: −26.7
Seemingly optically brightestAPM 08279+5255Seeming absolute magnitude of −32.2This quasar is gravitationally lensed; its actual absolute magnitude is estimated to be −30.5
Most luminousSMSS J215728.21-360215.1Absolute magnitude of −32.36Highest absolute magnitude discovered thus far.
Most powerful quasar radio source3C 273Also the most powerful radio source in the sky
Most powerfulSMSS J215728.21-360215.1
Most variable quasar radio sourceQSO J1819+3845 (Q1817+387)Also the most variable extrasolar radio source
Least variable quasar radio source
Most variable quasar optical source
Least variable quasar optical source
Most distant UHZ1z = 10.1Most distant quasar known as of 2023[45]
Most distant radio-quiet quasar
Most distant radio-loud quasarz = 6.12 Found June 2008[46] [47]
Most distant blazar quasarPSO J0309+27z > 6
Least distant Markarian 231600 Mly [48] inactive: IC 2497
Largest Large Quasar GroupHuge-LQG
(U1.27)
73 quasars
Fastest Growing QuasarSMSS J052915.80–435152.0 (QSO J0529-4351)~ 413 solar masses per year (using standard radiative efficiency); ~ 370 solar masses per year (using best-fit slim disc model)[49] [50]

First quasars found

First 10 Quasars Identified
RankQuasarDate of discoveryNotes
1 1963
2 1963
3 1964
3 1964
5 1965 [51]
5 1965
5 1965
5 1965
5 1965
These are the first quasars which were found and had their redshifts determined.

Most distant quasars

In 1964 a quasar became the most distant object in the universe for the first time. Quasars would remain the most distant objects in the universe until 1997, when a pair of non-quasar galaxies would take the title (galaxies CL 1358+62 G1 & CL 1358+62 G2 lensed by galaxy cluster CL 1358+62).[52]

In cosmic scales distance is usually indicated by redshift (denoted by z) which is a measure of recessional velocity and inferred distance due to cosmological expansion.

Quasars with z > 6[53]
QuasarDistanceNotes
UHZ1z = 10.1Most distant quasar known
QSO J0313–1806z = 7.64Former most distant quasar.
ULAS J1342+0928z = 7.54Former most distant quasar.
J1007+2115 (Pōniuāʻena)z = 7.52
ULAS J1120+0641
(ULAS J112001.48+064124.3)
z = 7.085Former most distant quasar. First quasar with z > 7.
CHFQS J2348-3054
(CHFQS J234833.34-305410.0)
z = 6.90
PSO J172.3556+18.7734z = 6.82Currently the most distant radio-loud known quasar
CFHQS J2329-0301
(CFHQS J232908-030158)
z = 6.43 Former most distant quasar.
SDSS J114816.64+525150.3
(SDSS J1148+5251)
z = 6.419Former most distant quasar.[54] [55] [56]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
z = 6.28 Former most distant quasar. First quasar with z > 6.
SDSS J104845.05+463718.3
(QSO J1048+4637)
z = 6.23
SDSS J162331.81+311200.5
(QSO J1623+3112)
z = 6.22 [57]
CFHQS J0033-0125
(CFHQS J003311-012524)
z = 6.13
SDSS J125051.93+313021.9
(QSO J1250+3130)
z = 6.13
CFHQS J1509-1749
(CFHQS J150941-174926)
z = 6.12
z = 6.12 Most distant radio-quasar.[58]
SDSS J160253.98+422824.9
(QSO J1602+4228)
z = 6.07
SDSS J163033.90+401209.6
(QSO J1630+4012)
z = 6.05
CFHQS J1641+3755
(CFHQS J164121+375520)
z = 6.04
SDSS J113717.73+354956.9
(QSO J1137+3549)
z = 6.01
SDSS J081827.40+172251.8
(QSO J0818+1722)
z = 6.00
SDSSp J130608.26+035626.3
(QSO J1306+0356)
z = 5.99 [59]
Most Distant Quasar by Type
TypeQuasarDateDistanceNotes
Most distant UHZ12023z = 10.2
Most distant radio loud quasar2008z = 6.12
Most distant radio quiet quasar
Most distant OVV quasar
Most Distant Quasar Titleholders
QuasarDateDistanceNotes
UHZ12023–z = 10.2 Current distance record holder
QSO J0313−18062021–2023z = 7.64
ULAS J1342+09282017–2021z = 7.54[60]
2011–2017z = 7.085Not the most distant object when discovered. First quasar with z > 7.[61]
CFHQS J2329-0301
(CFHQS J232908-030158)
2007–2011 z = 6.43 Not the most distant object when discovered. It did not exceed IOK-1 (z = 6.96), which was discovered in 2006.[62] [63] [64] [65] [66] [67]
SDSS J114816.64+525150.3
(SDSS J1148+5251)
2003–2007z = 6.419Not the most distant object when discovered. It did not exceed HCM 6A galaxy lensed by Abell 370 at z = 6.56, discovered in 2002. Also discovered around the time of discovery was a new most distant galaxy, SDF J132418.3+271455 at z = 6.58.[68] [69] [70] [71] [72] [73]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
2001–2003 z = 6.28Most distant object when discovered. First object with z > 6.[74] [75] [76]
SDSS 1044-0125
(SDSSp J104433.04-012502.2)
2000–2001 z = 5.82Most distant object when discovered. It exceeded galaxy SSA22-HCM1 (z = 5.74; discovered in 1999) as the most distant object.[77] [78] [79] [80] [81] [82]
RD300
(RD J030117+002025)
2000z = 5.50Not the most distant object when discovered. It did not surpass galaxy SSA22-HCM1 (z = 5.74; discovered in 1999).[83] [84] [85]
SDSSp J120441.73-002149.6
(SDSS J1204-0021)
2000z = 5.03Not the most distant object when discovered. It did not surpass galaxy SSA22-HCM1 (z = 5.74; discovered in 1999).[86]
SDSSp J033829.31+002156.3
(QSO J0338+0021)
1998–2000 z = 5.00First quasar discovered with z > 5. Not the most distant object when discovered. It did not surpass galaxy BR1202-0725 LAE (z = 5.64; discovered earlier in 1998).[87] [88] [89] [90] [91]
PC 1247+34061991–1998z = 4.897Most distant object when discovered.[92] [93] [94] [95]
PC 1158+46351989–1991 z = 4.73Most distant object when discovered.[96] [97] [98] [99]
Q0051-2791987–1989 z = 4.43 Most distant object when discovered.[100] [101] [102] [103]
Q0000-26
(QSO B0000-26)
1987 z = 4.11 Most distant object when discovered.[104]
PC 0910+5625
(QSO B0910+5625)
1987 z = 4.04Most distant object when discovered; second quasar with z > 4.[105] [106]
Q0046–293
(QSO J0048-2903)
1987z = 4.01Most distant object when discovered; first quasar with z > 4.[107] [108]
Q1208+1011
(QSO B1208+1011)
1986–1987 z = 3.80Most distant object when discovered and a gravitationally-lensed double-image quasar. From the time of discovery to 1991, had the least angular separation between images, 0.45.[109] [110]
PKS 2000-330
(QSO J2003-3251, Q2000-330)
1982–1986 z = 3.78 Most distant object when discovered.[111] [112]
OQ172
(QSO B1442+101)
1974–1982z = 3.53 Most distant object when discovered.[113]
OH471
(QSO B0642+449)
1973–1974z = 3.408 Most distant object when discovered; first quasar with z > 3. Nicknamed "the blaze marking the edge of the universe".[114] [115] [116] [117]
1970–1973 z = 2.877 Most distant object when discovered. The redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.[118] [119] [120]
5C 02.56
(7C 105517.75+495540.95)
1968–1970 z = 2.399 Most distant object when discovered.[121] [122]
4C 25.05
(4C 25.5)
1968 z = 2.358 Most distant object when discovered.[123]
PKS 0237-23
(QSO B0237-2321)
1967–1968 z = 2.225 Most distant object when discovered.[124] [125] [126]
4C 12.39
(Q1116+12, PKS 1116+12)
1966–1967 z = 2.1291 Most distant object when discovered.[127]
4C 01.02
(Q0106+01, PKS 0106+1)
1965–1966 z = 2.0990 Most distant object when discovered.[128] [129]
3C 91965 z = 2.018 Most distant object when discovered; first quasar with z > 2.[130] [131] [132]
1964–1965 z = 0.545 First quasar to become the most distant object in the universe, beating radio galaxy 3C 295.[133] [134] [135] [136]
3C 481963–1964 z = 0.367Second quasar redshift measured. Redshift was discovered after publication of 3C273's results prompted researchers to re-examine spectroscopic data. Not the most distant object when discovered. The radio galaxy 3C 295 was found in 1960 with z = 0.461.[137] [138] [139]
3C 2731963 z = 0.158First quasar redshift measured. Not the most distant object when discovered. The radio galaxy 3C 295 was found in 1960 with z = 0.461.[140] [141] [142]

Most powerful quasars

10 Most luminous Quasars
RankQuasarDataNotes
1 It has an intrinsic bolometric luminosity of ~ 6.9 × 1014 Suns or ~ 2.6 × 1041 watts [143]
2It has an intrinsic bolometric luminosity in excess of 1014 Suns or 1041 watts[144] [145]
3Has over 1041 watts luminosity [146] [147]
4Has a luminosity of over 1041 watts[148]
5Has a luminosity of around 1.62 × 1041 watts [149]
6Has a luminosity of over 1041 watts – optically brightest for z>3[150]
J1144-4308[151]
[152] [153]
[154]
SDSS J160455.39+381201.6z = 2.51, M(i) = 15.84
[155]

See also

External links

Notes and References

  1. Web site: Subir Sarkar . Re-examining cosmic acceleration . . 41 . Jan 20, 2021.
  2. Toward the Edge of the Universe. Time Magazine. https://web.archive.org/web/20080220093047/http://www.time.com/time/magazine/article/0,9171,901720,00.html. dead. 20 February 2008. May 21, 1965.
  3. Magain, P. . Surdej, J. . Swings, J.-P. . Borgeest, U. . Kayser, R. . Discovery of a quadruply lensed quasar - The 'clover leaf' H1413 + 117. Nature . 1988 . 334 . 6180 . 325–327 . 1988Natur.334..325M . 10.1038/334325a0. 4366260 .
  4. Venturini . S. . Solomon . P. M. . The Molecular Disk in the Cloverleaf Quasar . 2003 . The Astrophysical Journal . 590 . 2 . 740–745 . 10.1086/375050 . 2003ApJ...590..740V. astro-ph/0210529. 761080 .
  5. Inada . N. . etal . 2003 . A Gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds . Nature . 426 . 6968. 810–812 . astro-ph/0312427. 2003Natur.426..810I . 10.1038/nature02153. 14685230 . 4411894 .
  6. Oguri . M. . etal . 2004 . Observations and Theoretical Implications of the Large-Separation Lensed Quasar SDSS J1004+4112 . The Astrophysical Journal . 605 . 1 . 78–97 . astro-ph/0312429 . 2004ApJ...605...78O . 10.1086/382221. 15594674 .
  7. Inada . N. . etal . 2005 . Discovery of a Fifth Image of the Large Separation Gravitationally Lensed Quasar SDSS J1004+4112 . Publications of the Astronomical Society of Japan . 57 . 3. L7–L10 . 10.1093/pasj/57.3.L7 . astro-ph/0503310. 2005PASJ...57L...7I.
  8. 2006ApJ...653L..97I. astro-ph/0611275. 10.1086/510671. SDSS J1029+2623: A Gravitationally Lensed Quasar with an Image Separation of 22."5. The Astrophysical Journal. 653. 2. L97–L100. 2006. Inada. Naohisa. 7368712. etal.
  9. 2008ApJ...676L...1O. 0802.0002. 10.1086/586897. The Third Image of the Large-Separation Lensed Quasar SDSS J1029+2623. The Astrophysical Journal. 676. L1–L4. 2008. Oguri. Masamune. 1. 740758. etal.
  10. 2011ApJ...728L..18K. 1008.2315. 10.1088/2041-8205/728/1/L18. Analyzing the Flux Anomalies of the Large-Separation Lensed Quasar SDSS J1029+2623. The Astrophysical Journal. 728. L18. 2011. Kratzer. Rachael M. 1. 119154857. etal.
  11. ScienceDaily, "Quasar Observed in Six Separate Light Reflections", 7 August 2013
  12. 1211.1091 . 2013ApJ...773..146D . 10.1088/0004-637X/773/2/146. SDSS J2222+2745: A Gravitationally Lensed Sextuple Quasar with a Maximum Image Separation of 15.1 Discovered in the Sloan Giant Arcs Survey . The Astrophysical Journal . 773 . 2 . 146 . 2013 . Dahle . H.. 89604876 . etal.
  13. SIMBAD, Object query : QSO 1548+115
  14. Book: Burke . Bernard F. . Gravitational lenses - Observations . 1986 . Quasars, Proceedings of the IAU Symposium, Bangalore, India, 2–6 December 1985 . 119 . D. Reidel Publishing Co. . 517 . 1986IAUS..119..517B.
  15. SIMBAD, Object query : QSO 1146+111
  16. Space Daily, "Astronomers Baffled by Discovery of Rare Quasar Quartet", 18 May 2015
  17. Quasar Quartet Embedded in Giant Nebula Reveals Rare Massive Structure in Distant Universe . Hennawi, Joseph F. . Prochaska, J. Xavier . Cantalupo, Sebastiano . Arrigoni-Battaia, Fabrizio . 15 May 2015 . 348 . 6236 . 779–783 . Science . 10.1126/science.aaa5397 . 2015Sci...348..779H . 1505.03786 . 25977547. 35281881 .
  18. Robert Naeye . 10 January 2007 . Sky & Telescope . The First Triple Quasar.
  19. Alan MacRobert . 7 July 2006 . Sky & Telescope . Binary Quasar Is No Illusion.
  20. SpaceDaily, "Extremely rare triple quasar found", 14 March 2013 (accessed 14 March 2013)
  21. 1982MNRAS.199..683W. 10.1093/mnras/199.3.683. The clustering of quasars from an objective-prism survey. Monthly Notices of the Royal Astronomical Society. 199. 3. 683–705. 1982. Webster. A. free.
  22. Book: Clowes . Roger . Large Quasar Groups - A Short Review . Clowes . Roger. Adamson . Andrew . Bromage . Gordon . The new era of wide field astronomy : proceedings of a conference held at the Centre for Astrophysics, University of Central Lancashire, Preston, United Kingdom, 21-24 August 2000 . The New Era of Wide Field Astronomy . 2001 . 232 . 108 . Astronomical Society of the Pacific . 2001ASPC..232..108C . 1-58381-065-X.
  23. Clowes . Roger G. . Harris . Kathryn A. . Raghunathan . Srinivasan . Campusano . Luis E. . Soechting . Ilona K. . Graham . Matthew J. . 2013. A structure in the early universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology . Monthly Notices of the Royal Astronomical Society . 429. 4. 2910–2916. 10.1093/mnras/sts497 . free . 1211.6256. 2013MNRAS.429.2910C.
  24. ScienceDaily, "Biggest Structure in Universe: Large Quasar Group Is 4 Billion Light Years Across", Royal Astronomical Society, 11 January 2013 (accessed 13 January 2013)
  25. New Scientist, Quasar jets and cosmic engines: Some galaxies spew out vast amounts of material into space at velocities close to that of light. Astronomers still don't know why, 16 March 1991
  26. http://www.astr.ua.edu/keel/agn/3c279.html The superluminal radio source in the gamma-ray blazar 3C 279
  27. 1981Natur.294...47P . 10.1038/294047a0. Superluminal quasar 3C179 with double radio lobes. Nature. 294. 5836. 47–49. 1981. Porcas. R. W. 4242168.
  28. https://web.archive.org/web/20090911183842/http://www.newspaperarchive.com/LandingPage.aspx?type=glpnews&search=superluminal%20quasar&img=%5C%5Cna0003%5C6770450%5C26475536.html Daily Intelligencer, The May 29, 1981
  29. News: Walter Sullivan . The New York Times . If Nothing Is Faster than Light, What's Going On? . 27 December 1983 . C1 .
  30. Collin. Suzy. 861. 587–595. 2006. 10.1063/1.2399629. Quasars and Galactic Nuclei, a Half-Century Agitated Story . AIP Conference Proceedings . 2006AIPC..861..587C. astro-ph/0604560. 14346374.
  31. . The Quasi-Quasars . https://web.archive.org/web/20080423044527/http://www.time.com/time/magazine/article/0,9171,898892,00.html . dead . 23 April 2008 . 18 June 1965.
  32. SIMBAD, Object query : BSO 1, QSO B1246+377 -- Quasar
  33. News: Supermassive black hole binary discovered . Xaq Rzetelny . 8 January 2015 .
  34. A possible close supermassive black-hole binary in a quasar with optical periodicity . 10.1038/nature14143 . 1501.01375 . 25 July 2014 . 7 January 2015 . Matthew J. Graham . S. George Djorgovski . Daniel Stern . Eilat Glikman . Andrew J. Drake. Ashish A. Mahabal . Ciro Donalek. Steve Larson . Eric Christensen . Nature . 2015Natur.518...74G . 518 . 7537 . 74–76 . 25561176. 4459433 .
  35. Book: Unwin . Stephen C.. Superluminal motion in the quasar 3C279 . 1987 . 1987slrs.work...34U . Superluminal radio sources; Proceedings of the Workshop, Pasadena, Calif., 28–30 October 1986 . Cambridge University Press . 34–39.
  36. Book: Preuss . E. . The Beginnings of VLBI at the 100-m Radio Telescope . 6th European VLBI Network Symposium on New Developments in VLBI Science and Technology, held in Bonn, 25–28 June 25 2002 . Proceedings of the 6th EVN Symposium . E. Ros . R. W. Porcas . A. P. Lobanov . J. A. Zensus . Max-Planck-Institut für Radioastronomie . 1. 2002 . 2002evn..conf....1P.
  37. . X Rays from a Quasar . https://web.archive.org/web/20081215134735/http://www.time.com/time/magazine/article/0,9171,899648,00.html . dead . 15 December 2008 . 14 July 1967.
  38. Discovery News, "Primordial 'Dust Free' Monsters Lurk at the Edge of the Universe", Ian O'Neill, 18 March 2010 (accessed 6 April 2010)
  39. DNA India, "Astronomers discover most primitive supermassive black holes known", ANI, 19 March 2010 (accessed 6 April 2010)
  40. News: The Times of India . Most primitive supermassive black holes known 'discovered' . 19 March 2010 . . 6 April 2010.
  41. 2010Natur.464..380J . 10.1038/nature08877. 20237563. Dust-free quasars in the early Universe. Nature. 464. 7287. 380–383. 2010. Jiang. Linhua. Fan. Xiaohui. Brandt. W. N. Carilli. Chris L. Egami. Eiichi. Hines. Dean C. Kurk. Jaron D. Richards. Gordon T. Shen. Yue. Strauss. Michael A. Vestergaard. Marianne. Walter. Fabian. 1003.3432. 4317805.
  42. Scientific Computing, "Fast-growing Primitive Black Holes found in Distant Quasars " (accessed 4 April 2010)
  43. SIMBAD, "QSO J0303-0019" (accessed 4 April 2010)
  44. SIMBAD, "QSO J0005-0006" (accessed 4 April 2010)
  45. Web site: APOD: 2023 November 10 - UHZ1: Distant Galaxy and Black Hole . 2023-11-10 . apod.nasa.gov.
  46. http://www.physorg.com/news131979058.html Radio astronomers detect 'baby quasar' near the edge of the visible Universe
  47. SIMBAD, Object query : QSO J1427+3312, QSO J1427+3312 -- Quasar
  48. Web site: Double black hole is powering quasar, astronomers find. CNN. 31 August 2015.
  49. Web site: European Southern Observatory . Brightest and fastest-growing: astronomers identify record-breaking quasar . 2024-02-19 . www.eso.org . en.
  50. Web site: The accretion of a solar mass per day by a 17-billion solar mass black hole . Wolf . Christian . Lai . Samuel . 2023-12-21 . www.eso.org . 2024-02-20.
  51. Shields . Gregory A. . A Brief History of Active Galactic Nuclei . Publications of the Astronomical Society of the Pacific . June 1999 . 111 . 760 . 661–678 . astro-ph/9903401 . 1999PASP..111..661S . 10.1086/316378. 18953602 .
    Web site: Shields . G. . A Brief History of AGN . nedwww.ipac.caltech.edu.
  52. Illingworth . Garth . Galaxies at High Redshift . Astrophysics and Space Science . 1999 . 269/270 . 165–181 . 10.1023/A:1017052809781 . astro-ph/0009187 . 1999Ap&SS.269..165I . 119363931 .
    Web site: 8. Z > 5 Galaxies . Illingworth . G. . nedwww.ipac.caltech.edu.
  53. Schneider . Donald P. . etal . The Sloan Digital Sky Survey Quasar Catalog. III. Third Data Release . The Astronomical Journal . August 2005 . 130 . 2 . 367–380 . 10.1086/431156. astro-ph/0503679 . 2005AJ....130..367S . 21213675 .
  54. astro-ph/0307408 . High-excitation CO in a quasar host galaxy at z = 6.42 . Astronomy & Astrophysics . 409 . 3 . L47–L50 . Bertoldi . F . etal. 2003 . 10.1051/0004-6361:20031345 . 2003A&A...409L..47B . 14799311.
  55. Origin of supermassive black holes . 0709.0070. Dokuchaev. V. I. Eroshenko. Yu. N. Rubin. S. G. astro-ph. 2007.
  56. White . Richard L. . Becker . Robert H. . Fan . Xiaohui . Strauss . Michael A. . Probing the Ionization State of the Universe at z > 6 . The Astronomical Journal . July 2003 . 126 . 1 . 1–14 . 10.1086/375547 . astro-ph/0303476 . 2003AJ....126....1W . 51505828 .
  57. 0704.2053 . Millimeter and Radio Observations of z~6 Quasars . The Astronomical Journal . 134 . 2 . 617–627 . Wang . Ran . etal . 2007 . 10.1086/518867 . 2007AJ....134..617W . 17334898 .
  58. SIMBAD, Object query : QSO B1425+3326, QSO J1427+3312 -- Quasar
  59. Fan . Xiaohui . etal . A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ~ 6 . The Astronomical Journal . December 2001 . 122 . 6 . 2833–2849 . 10.1086/324111. astro-ph/0108063 . 2001AJ....122.2833F . 119339804 .
  60. Bañados, Eduardo. etal. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 . 6 December 2017 . . 553 . 7689 . 473–476 . 10.1038/nature25180 . 1712.01860 . 2018Natur.553..473B . 29211709 . 205263326.
  61. Scientific American, "Brilliant, but Distant: Most Far-Flung Known Quasar Offers Glimpse into Early Universe", John Matson, 29 June 2011
  62. Discovery.com Black Hole Is Most Distant Ever Found 7 June 2007
  63. Willott . C. J.. Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey . . 134 . 6 . 2435–2450 . 2007 . 10.1086/522962 . etal . 2007AJ....134.2435W. 0706.0914. 9718805.
  64. CFHQS UOttawa, Canada-France High-z Quasar Survey
  65. CFH UHawaii, Astronomers find most distant black hole
  66. 2006Natur.443..186I . 10.1038/nature05104. 16971942. astro-ph/0609393. A galaxy at a redshift z = 6.96 . Nature. 443. 7108. 186–8. 2006. Iye. Masanori. 2876103. etal.
  67. BBC News, Astronomers claim galaxy record, 11 July 2007, 17:10 GMT 18:10 UK
  68. astro-ph/0603121 . 350 Micron Dust Emission from High Redshift Quasars . The Astrophysical Journal . 642 . 2 . 694–701 . Beelen . A. . etal . 2006 . 10.1086/500636 . 2006ApJ...642..694B . 118902314 .
  69. New Scientist, New record for Universe's most distant object, 17:19 14 March 2002
  70. BBC News, Far away stars light early cosmos, 14 March 2002, 11:38 GMT
  71. BBC News, Most distant galaxy detected, 25 March 2003, 14:28 GMT
  72. A Redshift z = 6.56 Galaxy behind the Cluster Abell 370 . Hu . E. M. . etal . . 568 . 2 . 5 March 2002 . L75–L79 . 10.1086/340424 . 2002ApJ...568L..75H. astro-ph/0203091 . 117047333 .
  73. astro-ph/0301096. Kodaira. K. The Discovery of Two Lyman α Emitters Beyond Redshift 6 in the Subaru Deep Field. Publications of the Astronomical Society of Japan. 55. 2. L17–L21. etal. 2003. 10.1093/pasj/55.2.L17. 2003PASJ...55L..17K.
  74. astro-ph/0112075 . VLT observations of the z = 6.28 quasar SDSS 1030+0524 . The Astronomical Journal . 123 . 5 . 2151 . Pentericci . L . etal . 2002 . 10.1086/340077 . 2002AJ....123.2151P . 119041760 .
  75. A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524. Haiman . Zoltán . Cen . Renyue . . 578 . 2 . 2002 . 702–7 . 10.1086/342610 . 2002ApJ...578..702H . astro-ph/0205143 . 12005897 .
  76. 2004ApJ...611L..13F . astro-ph/0406561. 10.1086/423669. The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524 . The Astrophysical Journal. 611 . L13. 2004. Farrah . D. Priddey . R. Wilman . R. Haehnelt. M. McMahon. R. 1. 14854831.
  77. International Team of Astronomers Finds Most Distant Object . Summer 2000 . Science Journal . 17 . 1 . Eberly College of Science, PennState . https://web.archive.org/web/20090912024541/http://www.science.psu.edu/journal/Sum2000/DistObj.htm . 12 September 2009.
  78. An Extremely Luminous Galaxy at z = 5.74. Hu . Esther M. . McMahon . Richard G. . Cowie . Lennox L.. . 522 . 1 . 3 August 1999 . L9–L12 . 10.1086/312205. 1999ApJ...522L...9H . astro-ph/9907079 . 119499546 .
  79. News: 5 June 2001 . PennState Eberly College of Science . Discovery Announced of Two Most Distant Objects . https://web.archive.org/web/20071121093952/http://www.science.psu.edu/alert/Schneider6-2001.htm . 2007-11-21.
  80. SDSS, Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe, June 2001
  81. PennState Eberly College of Science, X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite, Dec 2000
  82. SPACE.com, Most Distant Object in Universe Comes Closer, 1 December 2000
  83. NOAO Newsletter - NOAO Highlights - March 2000 - Number 61, The Most Distant Quasar Known
  84. Chandra Detection of a Type II Quasar at z = 3.288. Stern . Daniel . etal. . 568 . 1 . 20 March 2002 . 71–81 . 10.1086/338886 . 2002ApJ...568...71S. astro-ph/0111513 . 119014942 .
  85. Stern . Daniel . Spinrad . Hyron . Eisenhardt . Peter . Bunker . Andrew J. . Dawson . Steve . Stanford . S. A. . Elston . Richard . Discovery of a Color-selected Quasar at z = 5.50 . The Astrophysical Journal . 20 April 2000 . 533 . 2 . L75–L78 . 10.1086/312614. 10770694 . astro-ph/0002338 . 2000ApJ...533L..75S . 28118881 .
  86. UW-Madison Astronomy, Confirmed High Redshift (z > 5.5) Galaxies - (Last Updated 10 February 2005)
  87. SDSS 98-3 Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Dec 1998
  88. Fan . Xiaohui . etal . High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. IV. Luminosity Function from the Fall Equatorial Stripe Sample . The Astronomical Journal . January 2001 . 121 . 1 . 54–65 . 10.1086/318033. astro-ph/0008123 . 2001AJ....121...54F . 119373674 .
  89. SIMBAD, Object query : SDSSp J033829.31+002156.3, QSO J0338+0021 -- Quasar
  90. News: Henry Fountain . 15 December 1998 . Observatory: Finding Distant Quasars . The New York Times . F5 .
  91. News: John Noble Wilford . 20 October 1988 . Peering Back in Time, Astronomers Glimpse Galaxies Aborning . The New York Times . F1 .
  92. 1994AJ....108.1147S. 10.1086/117143. Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4. The Astronomical Journal. 108. 1147. 1994. Smith. J. D . etal.
  93. New Scientist, issue 1842, 10 October 1992, page 17, Science: Infant galaxy's light show
  94. FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar 8 December 1998
  95. 1998MNRAS.294L...7H. astro-ph/9801026. 10.1046/j.1365-8711.1998.01368.x. Discovery of radio-loud quasars with z = 4.72 and z = 4.010. Monthly Notices of the Royal Astronomical Society. 294. L7–L12. 1998. Hook. I. M. McMahon. R. G. 1. free .
  96. 1991AJ....101....5T. 10.1086/115663. Quasars and galaxy formation. I - the Z greater than 4 objects. The Astronomical Journal. 101. 5. 1991. Turner. Edwin L.
  97. SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 -- Quasar
  98. 1991NYASA.647...31C . 10.1111/j.1749-6632.1991.tb32157.x. Young Galaxies. Annals of the New York Academy of Sciences. 647. 31–41. 1991. Cowie. Lennox L. 1 Texas/ESO-Cer. 222074763.
  99. The New York Times, Peering to Edge of Time, Scientists Are Astonished, 20 November 1989
  100. 1987Natur.330..453W . 10.1038/330453a0. Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field. Nature. 330. 6147. 453. 1987. Warren. S. J. Hewett. P. C. Osmer. P. S. Irwin. M. J. 4352819.
  101. 1988Ap.....29..657L . 10.1007/BF01005972. Absorption spectra of quasars. Astrophysics . 29. 2 . 657–671 . 1989. Levshakov. S. A. 122978350.
  102. The New York Times, Objects Detected in Universe May Be the Most Distant Ever Sighted, 14 January 1988
  103. News: John Noble Wilford . 10 May 1988 . Astronomers Peer Deeper Into Cosmo . The New York Times. C1 .
  104. SIMBAD, Object query : Q0000-26, QSO B0000-26 -- Quasar
  105. 1987ApJ...321L...7S. 10.1086/184996. PC 0910 + 5625 - an optically selected quasar with a redshift of 4.04. The Astrophysical Journal. 321. L7. 1987. Schmidt. Maarten. Schneider. Donald P. Gunn. James E.
  106. SIMBAD, Object query : PC 0910+5625, QSO B0910+5625 -- Quasar
  107. Warren . S. J. . Hewett . P. C. . Irwin . M. J. . McMahon . R. G. . Bridgeland . M. T. . Bunclark . P. S. . Kibblewhite . E. J. . First observation of a quasar with a redshift of 4 . Nature . 8 January 1987 . 325 . 6100 . 131–133 . 10.1038/325131a0 . 1987Natur.325..131W. 4335291 .
    First observation of a quasar with a redshift of 4
  108. SIMBAD, Object query : Q0046-293, QSO J0048-2903 -- Quasar
  109. SIMBAD, Object query : Q1208+1011, QSO B1208+1011 -- Quasar
  110. NewScientist, Quasar doubles help to fix the Hubble constant, 16 November 1991
  111. Orwell Astronomical Society (Ipswich) - OASI; Archived Astronomy News Items, 1972 - 1997
  112. SIMBAD, Object query : PKS 2000-330, QSO J2003-3251 -- Quasar
  113. SIMBAD, Object query : OQ172, QSO B1442+101 -- Quasar
  114. OSU Big Ear, History of the OSU Radio Observatory
  115. . The Edge of Night . https://web.archive.org/web/20081214071937/http://www.time.com/time/magazine/article/0,9171,945213,00.html . dead . 14 December 2008 . 23 April 1973.
  116. SIMBAD, Object query : OH471, QSO B0642+449 -- Quasar
  117. Warren . S J . Hewett . P C . The detection of high-redshift quasars . Reports on Progress in Physics . 1 August 1990 . 53 . 8 . 1095–1135 . 10.1088/0034-4885/53/8/003. 1990RPPh...53.1095W .
  118. Quasars and Pulsars, Dewey Bernard Larson, (c) 1971; CHAPTER VIII - Quasars: The General Picture ; LOC 75-158894
  119. http://www.reciprocalsystem.com/ce/q3y.htm QUASARS - THREE YEARS LATER
  120. 1971ApJ...163..235B. 10.1086/150762. Some Inferences from Spectrophotometry of Quasi-Stellar Sources. The Astrophysical Journal. 163. 235. 1971. Bahcall. John N. Oke. J. B.
  121. 1970Natur.226..532L . 10.1038/226532a0 . The Unusually Large Redshift of 4C 05.34. Nature. 226. 5245. 532. 1970. Lynds. R. Wills. D. 16057373. free.
  122. SIMBAD, Object query : 5C 02.56, 7C 105517.75+495540.95 -- Quasar
  123. 1968ApJ...154L..41B. 10.1086/180265. The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies. The Astrophysical Journal. 154. L41. 1968. Burbidge. Geoffrey.
  124. Time Magazine, A Farther-Out Quasar, 7 April 1967
  125. SIMBAD, Object query : QSO B0237-2321, QSO B0237-2321 -- Quasar
  126. 1967ApJ...147..851B. 10.1086/149072. On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects. The Astrophysical Journal. 147 . 851 . 1967 . Burbidge . Geoffrey.
  127. SIMBAD, Object query : Q1116+12, 4C 12.39 -- Quasar
  128. Time Magazine, The Man on the Mountain, Friday, Mar. 11, 1966
  129. SIMBAD, Object query : Q0106+01, 4C 01.02 -- Quasar
  130. Book: Malcolm S. Longair. The Cosmic Century: A History of Astrophysics and Cosmology. registration . 2006. Cambridge University Press. 978-0-521-47436-8. 7.
  131. 1965ApJ...141.1295S. 10.1086/148217. Large Redshifts of Five Quasi-Stellar Sources. The Astrophysical Journal. 141. 1295. 1965. Schmidt. Maarten.
  132. Book: Proceedings of the First Texas Symposium on Relativistic Astrophysics . Introduction: The Discovery of Radio Galaxies and Quasars . Ivor Robinson . Alfred Schild . E. L. Schucking . The University of Chicago.
  133. 1964ApJ...139..781S. 10.1086/147815. Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147. The Astrophysical Journal. 139. 781. 1964. Schmidt. Maarten. Matthews. Thomas A.
  134. Book: Schmidt . Maarten . Matthews . Thomas A. . Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147 . Quasi-Stellar Sources and Gravitational Collapse, Proceedings of the 1st Texas Symposium on Relativistic Astrophysics . Ivor Robinson . Alfred Schild . E.L. Schucking . University of Chicago Press . 269 . 1965 . 1965qssg.conf..269S.
  135. 1992AJ....103.1451S. 10.1086/116159. Radio properties of optically selected high-redshift quasars. I - VLA observations of 22 quasars at 6 CM. The Astronomical Journal. 103 . 1451. 1992. Schneider. Donald P. Van Gorkom. J. H. Schmidt . Maarten . Gunn. James E.
  136. News: Time. Finding the Fastest Galaxy: 76,000 Miles per Second. 10 April 1964.
  137. The Structure of the Physical Universe, Volume III - The Universe of Motion, CHAPTER 23 - Quasar Redshifts, by Dewey Bernard Larson, Library of Congress Catalog Card No. 79-88078,, Copyright 1959, 1971, 1984
  138. 1963Natur.197.1041G . 10.1038/1971041a0. Red-Shift of the Unusual Radio Source: 3C 48. Nature. 197. 4872. 1041. 1963. Greenstein. Jesse L. Matthews. Thomas A. 4193798.
  139. Interview; Web site: Maaarten Schmidt .  ; 11 April and 2 & 15 May 1996
  140. 1961 May 12 meeting of the Royal Astronomical Society . The Observatory . 1961 . 81 . 113–118 . 1961Obs....81..113..
  141. P. . Varshni, Y. . No redshift in 3C 295 . Bulletin of the American Astronomical Society . March 1979 . 11 . 458 . 1979BAAS...11..458V.
  142. http://evolution-facts.org/Ev-V1/1evlch01d.htm The Origin of Matter Part 4
  143. 1805.04317. Wolf. Christian. Discovery of the Most Ultra-Luminous QSO Using GAIA, Sky Mapper, and WISE. Publications of the Astronomical Society of Australia. etal. 2018. 35. e024. 10.1017/pasa.2018.22. 2018PASA...35...24W. 55363916.
  144. astro-ph/0412149. Bachev. R. Short-term optical variability of high-redshift QSO's. Monthly Notices of the Royal Astronomical Society. 358. 3. 774–780. Strigachev. A. Semkov. E. 2005. 10.1111/j.1365-2966.2005.08708.x. free . 2005MNRAS.358..774B. 16843880.
  145. 1995ApJ...438..643K. 10.1086/175107. The spectral energy distribution of the z = 3 quasar: HS 1946+7658. The Astrophysical Journal. 438. 643. 1995. Kuhn. O. Bechtold. J. Cutri. R. Elvis. M. Rieke. M.
  146. 1210.5166. Pâris. Isabelle. The Sloan Digital Sky Survey quasar catalog: Ninth data release. Astronomy & Astrophysics. 548. A66. etal. 2012. 10.1051/0004-6361/201220142. 2012A&A...548A..66P. 119304969.
  147. 1502.07767. Stern. Jonathan. Spatially Resolving the Kinematics of the <100 μas Quasar Broad Line Region using Spectroastrometry. The Astrophysical Journal. 804. 57. Hennawi. Joseph F. Pott. Jörg-Uwe. 2015. 1. 10.1088/0004-637X/804/1/57. 2015ApJ...804...57S. 118482601.
  148. 1208.5517. Eisenhardt. Peter R. M. The First Hyper-Luminous Infrared Galaxy Discovered by WISE. The Astrophysical Journal. 755. 2. 173. etal. 2012. 10.1088/0004-637X/755/2/173. 2012ApJ...755..173E. 35487945.
  149. 1502.07418. Wu. Xue-Bing. An ultra-luminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature. 518. 7540. 512–515. etal. 2015. 10.1038/nature14241. 2015Natur.518..512W. 25719667. 4455954.
  150. Stepanian . J. A. . Green . R. F. . Foltz . C. B. . Chaffee . F. . Chavushyan . V. H. . Lipovetsky . V. A. . Erastova . L. K. . Spectroscopy and Photometry of Stellar Objects from the Second Byurakan Survey . The Astronomical Journal . December 2001 . 122 . 6 . 3361–3382 . 10.1086/324460. 2001AJ....122.3361S . free .
  151. Onken . Christopher A. . Lai . Samuel . Wolf . Christian . Lucy . Adrian B. . Hon . Wei Jeat . Tisserand . Patrick . Sokoloski . Jennifer L. . Luna . Gerardo J. M. . Manick . Rajeev . Fan . Xiaohui . Bian . Fuyan . 2022-06-08 . Discovery of the most luminous quasar of the last 9 Gyr . Publications of the Astronomical Society of Australia . 39 . 10.1017/pasa.2022.36 . 2206.04204 . 2022PASA...39...37O .
  152. 1004.1167. Schneider. Donald P. The Sloan Digital Sky Survey Quasar Catalog V. Seventh Data Release. The Astronomical Journal. 139. 6. 2360–2373. etal. 2010. 10.1088/0004-6256/139/6/2360. 2010AJ....139.2360S. 118367130.
  153. Schneider . Donald P. . etal . The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release . The Astronomical Journal . July 2007 . 134 . 1 . 102–117 . 10.1086/518474. 0704.0806 . 2007AJ....134..102S . 14359163 .
  154. 1994ApJ...436L..55E. 10.1086/187631. An ASCA GIS spectrum of S5 0014+813 AT z = 3.384. The Astrophysical Journal. 436. L55. 1994. Elvis. Martin. Matsuoka. M. Siemiginowska. A. Aneta Siemiginowska. Fiore. F. Mihara. T. Brinkmann. W.
  155. 1005.5499. Wu. Xue-Bing. A very bright i=16.44 quasar in the 'redshift desert' discovered by LAMOST. Research in Astronomy and Astrophysics. 10. 8. 737. etal. 2010. 10.1088/1674-4527/10/8/003. 2010RAA....10..737W. 118576463.