List of nuclides explained

This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This represents isotopes of the first 105 elements, except for elements 87 (francium), 102 (nobelium) and 104 (rutherfordium). At least 3,300 nuclides have been experimentally characterized[1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour).

A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode.

Introduction

There are 251 known so-called stable nuclides. Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but no radioactive decay has yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 are determined to be very long-lived radioactive nuclides in the future. In this article, the "stable" nuclides are divided into three tables, one for nuclides that are theoretically stable (meaning no decay mode is possible) and nuclides that can theoretically undergo spontaneous fission but have not been evaluated to check for evidence of this happening, one for nuclides that can theoretically undergo forms of decay other than spontaneous fission but have not been evaluated, and finally a table of nuclides that can theoretically decay and have been evaluated but without detecting any decay. In this latter table, where a decay has been predicted theoretically but never observed experimentally (either directly or through finding an excess of the daughter), the theoretical decay mode is given in parentheses and have "> number" in the half-life column to show the lower limit for the half-life based on experimental observation. Such nuclides are considered to be "stable" until a decay has been observed in some fashion. For example, tellurium-123 was reported to be radioactive, but the same experimental group later retracted this report, and it presently remains observationally stable.

The next group is the primordial radioactive nuclides. These have been measured to be radioactive, or decay products have been identified (tellurium-128, barium-130). There are (currently) 35 of these (see these nuclides), of which 25 have half-lives longer than years. With most of these 25, decay is difficult to observe and for most purposes they can be regarded as effectively stable. Bismuth-209 is notable as it is the only naturally occurring isotope of an element which was long considered stable. A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235 have half-lives between and years, which means they have experienced at least 0.5% depletion since the formation of the Solar System about years ago, but still exist on Earth in significant quantities. They are the primary source of radiogenic heating and radioactive decay products. Together, there are a total of 286 primordial nuclides.

The list then covers the ~700 radionuclides with half-lives longer than 1 hour, split into two tables, half-lives greater than one day and less than one day.

Over 60 nuclides that have half-lives too short to be primordial can be detected in nature as a result of later production by natural processes, mostly in trace amounts. These include ~44 radionuclides occurring in the decay chains of primordial uranium and thorium (radiogenic nuclides), such as radon-222. Others are the products of interactions with energetic cosmic-rays (e.g. cosmic ray spallation) (cosmogenic nuclides), such as carbon-14. This gives a total of about 350 naturally occurring nuclides. Other nuclides may be occasionally produced naturally by rare cosmogenic interactions or as a result of other natural nuclear reactions (nucleogenic nuclides), but are difficult to detect.

Further shorter-lived nuclides have been detected in the spectra of stars, such as isotopes of technetium, promethium, and some actinides. The remaining nuclides are known solely from artificial nuclear transmutation. Some, such as caesium-137, are found in the environment but as a result of contamination from releases of man-made nuclear fission product (from nuclear weapons, nuclear reactors, and other processes). Other are produced artificially for industrial or medical purposes.

List legend

Each group of radionuclides, starting with the longest-lived primordial radionuclides, is sorted by decreasing half-life, but the tables are sortable by other columns.

αα decay
ββ decay
ββdouble β decay
εelectron capture
β+β+ decay
β+β+double β+ decay
SFspontaneous fission
ITisomeric transition

Full list

Theoretically stable nuclides

See main article: Stable nuclide. These are the theoretically stable nuclides, ordered by "energy".

No.data-sort-type="number" Nuclide!AZNEnergy
(MeV)
156Fe562630
262Ni622834
360Ni602832
458Fe582632
552Cr522428
657Fe572631
759Co592732
854Cr542430
961Ni612833
1055Mn552530
1164Ni642836
1266Zn663036
1353Cr532429
1463Cu632934
1565Cu652936
1668Zn683038
1750Ti502228
1851V512328
1967Zn673037
2048Ti482226
2172Ge723240
2270Ge703238
2369Ga693138
2488Sr883850
2574Ge743242
2649Ti492227
2776Se763442
2871Ga713140
2978Se783444
3090Zr904050
3189Y893950
3286Sr863848
3382Kr823646
3484Kr843648
3573Ge733241
3687Sr873849
3775As753342
3880Kr803644
3977Se773443
4085Rb853748
4191Zr914051
4283Kr833647
4379Br793544
4481Br813546
4592Zr924052
4646Ti462224
4747Ti472225
4844Ca442024
4994Mo944252
5093Nb934152
5196Mo964254
5295Mo954253
5342Ca422022
5438Ar381820
5545Sc452124
5697Mo974255
5798Ru984454
5843Ca432023
59100Ru1004456
6099Ru994455
6134S341618
6240Ar401822
63102Ru1024458
64101Ru1014457
6541K411922
6639K391920
67104Pd1044658
6837Cl371720
69103Rh1034558
7036S361620
71106Pd1064660
72105Pd1054659
7335Cl351718
74108Pd1084662
75107Ag1074760
76110Cd1104862
7730Si301416
78109Ag1094762
7932S321616
8033S331617
8131P311516
8228Si281414
8329Si291415
84112Cd1124864
85111Cd1114863
86114Sn1145064
87113In1134964
88116Sn1165066
89115Sn1155065
90118Sn1185068
91117Sn1175067
92120Sn1205070
93119Sn1195069
94121Sb1215170
95122Te1225270
96124Te1245272
97123Sb1235172
98126Te1265274
99125Te1255273
100128Xe1285474
101127I1275374
102130Xe1305476
103129Xe1295475
104132Xe1325478
105131Xe1315477
106134Ba1345678
107133Cs1335578
108136Ba1365680
109135Ba1355679
110137Ba1375681
111138Ba1385682
11227Al271314
113140Ce1405882
114139La1395782
11526Mg261214
116141Pr1415982
117142Nd1426082
11824Mg241212
11925Mg251213
120156Gd1566492
121157Gd1576493
122158Gd1586494
123159Tb1596594
12423Na231112
125163Dy1636697
126164Dy1646698
12722Ne221012
12820Ne201010
12916O1688
13021Ne211011
13119F19910
13217O1789
13318O18810
13412C1266
13515N1578
13614N1477
13713C1367
1384He422
13911B1156
14010B1055
141 9Be945
142 7Li734
143 6Li633
144 3He321
145 2H211
146 1H110

Nuclides that are observationally stable, having theoretical decay modes other than spontaneous fission

Ordered by "energy".

No.data-sort-type="number" Nuclide!AZNEnergyDecay modedata-sort-type="number" Decay energy
(MeV)
147 80Se803446β) 0.134
148 86Kr863650β) 1.256
149 84Sr843846+β+) 1.787
150102Pd1024656+β+) 1.172
15136Ar361818+β+) 0.433
152122Sn1225072β) 0.366
153150Sm1506288(α) 1.449
154152Sm1526290(α) 0.220
155154Gd1546490(α) 0.081
156155Gd1556491(α) 0.081
157164Er1646896+β+, α) 0.024, 1.304
158165Ho1656798(α) 0.139
159166Er1666898(α) 0.831
160167Er1676899(α) 0.666
161168Er16868100(α) 0.553
162169Tm16969100(α) 1.200
163170Yb17070100(α) 1.738
164171Yb17170101(α) 1.559
165172Yb17270102(α) 1.310
166173Yb17370103(α) 0.946
167174Yb17470104(α) 0.740
168175Lu17571104(α) 1.620
169181Ta18173108(α) 1.526
170185Re18575110(α) 2.195
171191Ir19177114(α) 2.084
172194Pt19478116(α) 1.504
173193Ir19377116(α) 1.017
174195Pt19578117(α) 1.158
175196Pt19678118(α) 0.794
176197Au19779118(α) 0.954
177198Hg19880118(α) 1.383
178199Hg19980119(α) 0.824
179200Hg20080120(α) 0.718
180201Hg20180121(α) 0.334
181202Hg20280122(α) 0.136
182203Tl20381122(α) 0.911
183204Hg20480124β) 0.416
184205Tl20581124(α) 0.157

Observationally stable nuclides for which decay has been searched for but not found (only lower bounds known)

Ordered by lower bound on half-life.

No.data-sort-type="number" Nuclide!AZNEnergyHalf-life
(seconds)
Half-life
(years)
Decay modedata-sort-type="number" Decay energy
(MeV)
185134Xe1345480> > [2] β) 0.825
18640Ca402020> > +β+) 0.194
187184W 18474110> > (α) 1.656
188182W 18274108> > (α) 1.772
189208Pb20882126> > [3] (α) 0.519
190206Pb20682124> > (α) 1.137
191126Xe1265472> > [4] +β+)0.897
192207Pb20782125> > (α) 0.391
193120Te1205268> > +β+) 1.700
194106Cd1064858> > +β+) 2.770
19558Ni582830> > +β+) 1.926
196183W 18374109> > (α) 1.680
197104Ru1044460> > [5] β)1.300
19854Fe542628> > [6] +β+) 0.680
199132Ba1325676> > +β+) 0.846
200110Pd1104664> > β) 2.000
20192Mo924250> > +β+) 1.649
202204Pb20482122> > (α) 1.972
203112Sn1125062> > [7] +β+) 1.922
20496Ru964452> > +β+) 2.719
205192Os19276116> > β, α) 0.413, 0.362
206198Pt19878120> > [8] β, α) 1.047, 0.087
207160Gd1606496> > β) 1.729
208144Sm1446282> > [9] +β+)1.781
209190Os19076114> > (α) 1.378
21064Zn643034> > [10] +β+) 1.096
21174Se743440> > [11] +β+)1.209
212186W 18674112> > (α) 1.123
21370Zn703040> > β) 0.998
214188Os18876112> > (α) 2.143
215143Nd1436083> > (α) 0.521
216148Nd1486088> > β, α) 1.929, 0.599
217142Ce1425884> > β, α) 1.417, 1.298
218179Hf17972107> > (α) 1.806
219196Hg19680116> > +β+, α) 0.820, 2.027
220154Sm1546292> > β) 1.251
221146Nd1466086> > β, α) 0.070, 1.182
22250Cr502426> > +β+) 1.167
223178Hf17872106> > (α) 2.083
224177Hf17772105> > (α)2.245
225156Dy1566690> > +β+, α) 2.011, 1.758
226153Eu1536390> > (α)0.274
227180Hf18072108> > (α)1.283
228108Cd1084860> > +β+) 0.272
229170Er17068102> > β, α) 0.654, 0.050
230138Ce1385880> > +β+) 0.694
231180mTa18073107> > [12] , ε, IT, α) 0.783, 0.929, 2.103
232176Hf17672104> > [13] (α) 2.255
23346Ca462026> > [14] β) 0.988
234176Yb17670106> > β, α) 1.083, 0.570
23594Zr944054> > β) 1.144
236124Sn1245074> > β) 2.287
237162Dy1626696> > (α) 0.085
238136Ce1365878> > [15] +β+) 2.419
239114Cd1144866> > β) 0.540
240123Te1235271> > [16] (ε) 0.052
241145Nd1456085> > (α) 1.578
242192Pt19278114> > (α) 2.418
243161Dy1616695> > (α) 0.344
244160Dy1606694> > (α) 0.439
245189Os18976113> > (α)1.976
246187Os18776111> > [17] (α) 2.720
247149Sm1496287> > (α) 1.870
248158Dy1586692> > [18] +β+, α) 0.283, 0.875
249162Er1626894> > +β+, α) 1.844, 1.646
250168Yb1687098> > +β+, α) 1.422, 1.951
25198Mo984256> > β) 0.112

Primordial radioactive nuclides (half-life > 5 × 108 years)

See main article: Primordial nuclide.

Ordered by half-life.

No.data-sort-type="number" rowspan=2NuclideAZNEnergyHalf-lifeDecay modedata-sort-type="number" rowspan=2Decay energy
(MeV)
(seconds)(years)
252128Te128 52 76ββ 0.868
253124Xe1245470εε 2.864
25478Kr78 3642εε 2.846
255136Xe136 54 82ββ 2.462
25676Ge76 32 44ββ 2.039
257130Ba130 56 74εε 2.620
25882Se82 34 48ββ 2.995
25948Ca48 20 28ββ<--, β--> 4.274 <--, 0.0058-->
260116Cd116 48 68ββ 2.809
261209Bi209 83 126α 3.137
26296Zr96 40 56ββ 3.348
263150Nd150 60 90ββ 3.367
264130Te130 52 78ββ 2.530
265100Mo100 42 58ββ 3.035
266151Eu151 63 88α 1.964
267180W180 74 106α 2.509
26850V50 23 27β+, β 2.205, 1.038
269174Hf174 72 102[19] α 2.497
270113Cd113 48 65β 0.321
271148Sm148 62 86α 1.986
272144Nd144 60 84α 1.905
273186Os186 76 110α 2.823
274115In115 49 66β 0.499
275152Gd152 64 88α 2.203
276184Os184 76 108α 2.963
277190Pt190 78 112α 3.252
278147Sm147 62 85α 2.310
279138La138 57 81β+, β 1.737, 1.044
28087Rb87 37 50β 0.283
281187Re187 75 112β 0.0026
282176Lu176 71 105β, β+ 1.193
283232Th232 90 142α, SF 4.083
284238U238 92 146α, SF, ββ4.270
28540K40 19 21β, β+ 1.311, 1.505, 1.505
286235U235 92 143α, SF 4.679

Radionuclides with half-lives of 10,000 years to 5 × 108 years

Ordered by half-life. Some of these are known to have been present in the early Solar System (marked "ESS", meaning the first few million years of the Solar System's history), because of an excess of their decay products.[20]

No.NuclideZNEnergyHalf-lifeDecay modeNotes
(seconds)(years)
287146Sm62 84α ESS
288244Pu94 150α, SF interstellar,[21] ESS
28992Nb41 51β+, βCG, ESS
290236U92 144α, SFDP
291205Pb82 123β+ESS
292129I53 76βCG, FP, ESS
293247Cm96 151αESS
294182Hf72 110βESS
295107Pd46 61βFP, ESS
29697Tc43 54β+
29798Tc43 55β
29853Mn25 28β+CG, ESS
29960Fe26 34βCG,[22] interstellar,[23] ESS
300210mBi83 127α
301237Np93 144α, SFDP
302150Gd64 86α
30393Zr40 53βFP
30410Be4 6βCG, ESS
305154Dy66 88[24] α
306135Cs55 80βFP
30726Al13 13β+CG, ESS
308242Pu94 148α, SF
309208Bi83 125β+
310248Cm96 152α, SF
31136Cl17 19β, β+CG, IM
31279Se34 45βFP
313234U92 142α, SFDP
314126Sn50 76βFP
31581Kr36 45β+CG
31699Tc43 56βFP, DP
317186mRe75 111IT
318233U92 141α, SFDP
319236Np93 143β+, β, α
32041Ca20 21β+CG, ESS
32159Ni28 31β+
322230Th90 140α, SFDP
323137La57 80β+
324202Pb82 120β+
325231Pa91 140α, SFDP
326239Pu94 145α, SFIM, DP
32794Nb41 53βCG

Radionuclides with half-lives of 10 years to 10,000 years

Ordered by half-life.

nodata-sort-type="number" nuclide!ZNenergyhalf-life (seconds)half-life (years)decay modenotes
328250Cm96 1548300 SF, α, β
329245Cm96 1498250 α, SF
330243Am95 1487371 α, SF
331229Th90 1397339 αDP
332240Pu94 1466560 α, SFDP
33314C6 85700 βCG, IM
33493Mo42 514839[25] β+
335246Cm96 1504760 α, SF
336163Ho67 964570 β+
337226Ra88 1381600 αDP
338247Bk97 1501380 α
339166mHo67 99 1200 β
340251Cf98 153898 α, SF
34191Nb41 50680 β+
342194Hg80 114444 β+
343108mAg47 61437.9 β+, IT
344241Am95 146432.2 α, SFIM
345249Cf98 151351.1 α, SF
346248Bk97 151> >300 α
34739Ar18 21269 βCG
348192mIr77 115241 IT
349158Tb65 93180 β+, β
350242mAm95 147141 IT, α, SF
35132Si14 18132 βCG
352209Po84 125125.2[26] α, β+
35363Ni28 35101 βIM
354151Sm62 8990.0 βFP
355238Pu94 14487.7 α, SFIM, DP
356148Gd64 8486.9[27] α
357157Tb65 9271.0 β+
358232U92 14068.9 α, SF
35944Ti22 2259.1 β+
360193Pt78 11550.0 β+
361121mSn50 7143.89 IT, β
362150Eu63 8736.89 β+
36342Ar18 2432.9 β
364207Bi83 12431.6 β+
365178m2Hf72 10631 IT
366137Cs55 8230.1 βFP, IM
367243Cm96 14729.1 α, β+, SF
36890Sr38 5228.9 βFP, IM
369210Pb82 12822.2 β, αDP, IM
370227Ac89 13821.77 β, αDP
371244Cm96 14818.1 α, SF
372145Pm61 8417.7 β+, α
37393mNb41 5216.1 IT
374241Pu94 14714.3 β, α, SF
375113mCd48 6513.9 β, ITFP
376152Eu63 8913.51 β+, β
377250Cf98 15213.08 α, SF
3783H1 212.32 βCG, IM
37985Kr36 4910.72 βFP, IM
380133Ba56 7710.52 β+

Radionuclides with half-lives of 1 day to 10 years

Ordered by half-life.

nodata-sort-type="number" nuclide!ZNenergyhalf-life (seconds)half-lifedecay modenotes
381154Eu63 918.60 y β, β+
382194Os76 1186.0 y β
383228Ra88 1405.75 y βDP
384146Pm61 855.53 y β+, β
38560Co27 335.27 y βIM
386155Eu63 924.75 y βFP
387204Tl81 1233.78 y β, β+IM
388174Lu71 1033.31 y β+
389101Rh45 563.3 y β+
390102mRh45 572.9 y β+, IT
391208Po84 1242.898 y α, β+
392236Pu94 1422.858 y α, SF
393125Sb51 742.759 y βFP
39455Fe26 292.737 y β+
395252Cf98 1542.645 y α, SFIM
396147Pm61 862.624 y βFP, DP
39722Na11 112.603 y β+CG
398134Cs55 792.065 y β, β+ FP
399171Tm69 1021.92 y β
400228Th90 1381.912 y α DP
401172Hf72 1001.87 y β+
402179Ta73 1061.82 y β+
403173Lu71 1021.37 y β+
404252Es99 1531.291 y α, β+, β
405109Cd48 611.263 y β+
406235Np93 1421.084 y β+, α
407106Ru44 621.023 y β FP
408144Pm61 83363 d β+
409145Sm62 83340 d β+
410248Cf98 150333.4 d α, SF
411249Bk97 152330 d β, α, SF
41249V23 26329.1 d β+
41354Mn25 29312.2 d β+, βIM
414119m1Sn50 69293.1 d IT
415144Ce58 86285 d βFP
416254Es99 155275.7 d α, β, SF, β+
41757Co27 30271.8 d β+IM
41868Ge32 36271 d β+IM
419143Pm61 82265 d β+
420110mAg47 63249.8 d β, IT
42165Zn30 35243.6 d β+IM
422153Gd64 89240.4 d β+IM
423102Rh45 57207 d β+, β
424195Au79 116186.1 d β+
425194mIr77 117170.9 d β
426184mRe75 109169 d IT, β+
427242Cm96 146162.8 d α, SF
42845Ca20 25162.6 d β
429177mLu71 106160.4 d β, IT
430121mTe52 69154.1 d IT, β+
431159Dy66 93144.4 d β+
432174m1Lu71 103142 d IT, EC
433210Po84 126138.4 d αDP
434139Ce58 81137.6 d β+
435123Sn50 73129.2 d β
436170Tm69 101128.6 d β, β+
437151Gd64 87124 d β+, α
438181W74 107121.2 d β+
43975Se34 41119.8 d β+IM
440123mTe52 71119.2 d IT
441113Sn50 63115.1 d β+
442182Ta73 109114.4 d β
443127mTe52 75109 d IT
44488Y39 49106.6 d β+
445257Fm100 157100.5 d α, SF
446185Os76 10993.6 d β+
447168Tm69 9993.1 d β+, β
448149Eu63 8693.1 d β+
44997mTc43 5491 d IT
45035S16 1987.51 d βCG
45183Rb37 4686.2 d β+
45246Sc21 2583.78 d β
45388Zr40 4883.4 d β+
45473As33 4080.3 d β+
45556Co27 2977.23 d β+
456185W74 11175.1 d β
457192Ir77 11573.827 d βIM
458160Tb65 9572.3 d β
45958Co27 3170.86 d β+
460183Re75 10870 d β+
461175Hf72 10370 d β+
462188W74 11469.78 d β
46385Sr38 4764.84 d β+
46495Zr40 5564.03 d βFP
46595mTc43 5261 d β+, IT
46691mNb41 5060.86 d IT,ε
467254Cf98 15660.5 d SF, α
468124Sb51 7360.12 d β
469125I53 7259.4 d β+IM
47091Y39 5258.51 d βFP
471125mTe52 7357.4 d IT
472148Eu63 8554.5 d β+, α
4737Be4 353.22 d β+CG
474258Md101 15751.5 d α, SF
47589Sr38 5150.57 d βFP, IM
476114mIn49 6549.51 d IT, β+
477146Gd64 8248.28 d β+
478203Hg80 12346.6 d β
479237Pu94 14345.2 d β+, α
480115mCd48 6744.56 d β
48159Fe26 3344.49 d βIM
482181Hf72 10942.38 d β
483148mPm61 8741.28 d β, IT
484105Ag47 5841.28 d β+
485255Es99 15639.8 d β, α, SF
486103Ru44 5939.26 d βFP
487127Xe54 7336.4 d β+
488184Re75 10935.4 d β+
48995Nb41 5434.99 d βFP
49037Ar18 1934.95 d β+CG
491129mTe52 7733.6 d IT, β
49284Rb37 4733.1 d β+, β
493241Cm96 14532.8 d β+, α
494141Ce58 8332.51 d βFP
495169Yb70 9932.03 d β+IM
496260Md101 15931.81 d SF, α, β+, β
49751Cr24 2727.7 d β+IM
498240Cm96 14427 d α, β+, SF
499233Pa91 14226.98 d βDP
50082Sr38 4425.56 d β+IM
50133P15 1825.34 d β
502179m2Hf72 10725.05 d IT
503234Th90 14424.1 d βDP
504147Eu63 8424.1 d β+, α
505178W74 10421.6 d β+
506230U92 13820.8 d α, SF
507253Es99 15420.5 d α, SF
508121Te52 6919.2 d ε
509227Th90 13718.7 d αDP
51086Rb37 4918.6 d β, β+
511253Cf98 15517.8 d β, α
51274As33 4117.8 d β+, β
513230Pa91 13917.4 d β+, β, α
514103Pd46 5717.0 d β+IM
51599Rh45 5416.1 d β+
51648V23 2515.97 d β+
517191Os76 11515.41 d β
518205Bi83 12215.31 d β+
519156Eu63 9315.19 d β
520225Ra88 13714.9 d βDP
52132P15 1714.268 d βCG, IM
522117mSn50 6714 d IT
523143Pr59 8413.56 d β
524189Ir77 11213.19 d β+
525136Cs55 8113.04 d β
526126I53 7312.93 d β+, β
527140Ba56 8412.75 d βFP
528126Sb51 7512.35 d β
529202Tl81 12112.23 d β+
530131mXe54 7711.84 d IT
531190Ir77 11311.78 d β+
532131Ba56 7511.5 d β+
533223Ra88 13511.43 d αDP, IM
53471Ge32 3911.43 d β+
535147Nd60 8710.98 d β
536246Pu94 15210.84 d β
537193mIr77 11610.53 d IT
538188Pt78 11010.2 d β+, α
53992mNb41 5110.15 d β+, α
540225Ac89 1369.92 d αDP
541131Cs55 769.69 dβ+IM
542125Sn50 759.64 d β
543169Er68 1019.39 d βIM
544149Gd64 859.28 d β+, α
545167Tm69 989.25 d β+
546129mXe54 758.88 d IT
547206Po84 1228.80 d β+, α
54872Se34 388.40 d β+
549106mAg47 598.28 d β+
550171Lu71 1008.24 d β+
551131I53 788.02 d βFP, IM
552257Es99 1587.7 d β, SF
553111Ag47 647.45 d β
554161Tb65 966.91 d β
555237U92 1456.75 d βDP
556172Lu71 1016.70 d β+IM
557177Lu71 1066.65 d β
558132Cs55 776.48 d β+, β
559206Bi83 1236.24 d β+
560196Au79 1175.17 d β+, β
56156Ni28 286.08 d β+
562118Te52 666 d β+
563145Eu63 825.93 d β+
564120mSb51 695.76 d β+
56552Mn25 275.59 d β+
566148Pm61 875.37 d β
567156Tb65 915.35 d β+
568155Tb65 905.32 d β+
569133Xe54 795.24 d βIM
570183Ta73 1105.10 d β
571210Bi83 1275.01 d β, αDP
572245Bk97 1484.94 d β+, α
573119mTe52 674.7 d β+, IT
574146Eu63 834.61 d β+
57547Ca20 274.54 d β
576234Np93 1414.4 d β+
577101mRh45564.34 d ε, IT
578193mPt781154.33 d IT
57996Tc43 534.28 d β+
580231U92 1394.2 d β+, α
581175Yb70 1054.19 d β
582124I53 714.18 d β+IM
583195mPt781174.01 d IT
584127Sb51 763.85 d β
585222Rn86 1363.82 d αDP
586186Re751113.72 d β−,eIM
587224Ra88 1363.63 d αDP
588100Pd46 543.63 d β+
58995mNb41543.61 d IT, β−
590166Dy66 1003.4 d β
591140Nd60 803.37 d β+
59247Sc21 263.35 d β
59387Y39 483.33 d β+
59489Zr40 493.27 d β+
59567Ga31 363.26 d β+IM
596132Te52 803.2 d βFP
597134Ce58 763.16 d β+
598199Au79 1203.14 d β
599201Tl81 1203.04 d β+IM
600253Fm100 1533. d β+, α
601191Pt78 1132.86 d β+
602111In49 622.8 d β+IM
60397Ru44 532.79 d β+
60499Mo42 572.75 d βFP, IM
605122Sb51 712.72 d β, β+
60671As33 382.72 d β+
607198Au79 1192.7 d βIM
608197Hg80 1172.67 d β+
60990Y39 512.67 d βIM
610182Re75 1072.67 d β+
611172Tm69 1032.65 d β
61267Cu29 382.58 d βIM
61344mSc21 232.44 d IT, β+
614128Ba56 722.43 d β+
61577Br35 422.38 d β+
616166Yb70 962.36 d β+
617177Ta73 1042.36 d β+
618239Np93 1462.36 d βDP
619153Tb65 882.34 d β+
62066Ni28 382.28 d β
621247Pu94 1532.27 d β
622198m2Au791192.27 d IT
623115Cd48672.23 d β−
624149Pm61 882.21 d β
625133mXe54792.20 d IT
626203Pb82 1212.16 d β+
627238Np93 1452.12 d β
628240Am95 1452.12 d β+, α
629172Er68 1042.05 d β
630170Lu71 992.01 d β+
63172Zn30 421.94 d β
632153Sm62 911.93 d βIM
633202Pt78 1241.83 d β
63448Sc21 271.82 d β
635246Bk97 1491.8 d β+, α
636195mHg80 1151.73 d IT, β+
637188Ir77 1111.73 d β+
638140La57 831.68 d β
639254mEs991551.64 d β−, IT, α, EC, SF
64069Ge32 371.63 d β+
641133mBa56771.62 d IT,e
64277As33 441.62 d β
643119Sb51 681.59 d β+
644147Gd64 831.59 d β+
645194Au79 1151.58 d β+
646229Pa91 1381.5 d β+, α
647246Cf98 1481.49 d α, β+, SF
64857Ni28 291.48 d β+
649105Rh45 601.47 d βFP
65082Br35 471.47 d β
65179Kr36 431.46 d β+
652137mCe58 791.43 d IT, β+
653169Lu71 981.42 d β+
654143Ce58 851.38 d β
655251Es99 1521.38 d β+, α
65683Sr38 451.35 d β+
657129Cs55 741.34 d β+
658268Db105 1631.33 d SF, EC, α[28]
659232Pa91 1411.31 d β, β+
660193Os76 1171.25 d β
661165Tm69 961.25 d β+
662131mTe52 791.25 d β, IT
663226Ac89 1371.22 d β, β+, α
664160Er68 921.19 d β+
665151Pm61 901.18 d β
666135mBa56791.17 d IT
667121Sn50711.13 d β−
668166Ho67991.12 d β−IM
66976As33 431.09 d β
670200Tl81 1191.09 d β+
67172As33 391.08 d β+
672231Th90 1411.06 d β, αDP
673252Fm100 1521.06 d α, SF
674156mTb65911.02 d IT
675189Re75 1141.01 d β

Radionuclides with half-lives of 1 hour to 1 day

Ordered by half-life.

nodata-sort-type="number" nuclide!ZNenergydata-sort-type="number" half-life (seconds)!data-sort-type="number" half-life (hours)!decay modenotes
676197mHg8011723.8IT
677187W7411323.7β
678248mBk9715123.7β, EC (30)
679173Hf7210123.6β+
68096Nb415523.4β
681154m2Tb658922.7β+, IT (1.8)
682236mNp9314322.5EC, β (50)
68343K192422.3β
684182Os7610622.1β+
685228Pa9113722.0β+, α (2)
68648Cr242421.6β+
687154Tb658921.5β+, β (<0.1)
688200Pb8211821.5β+
689112Pd466621.0β
69028Mg121620.9βCG
691100Rh455520.8β+
692133I538020.8β
693122Xe546820.1β+
694255Fm10015520.1α, SF (tr)
69595Tc435220.0β+
696181Re7510619.9β+
697197Pt7811919.9β
698135La577819.5β+
699194Ir7711719.3β
700142Pr598319.1β,EC (tr)
701200mAu7912118.7β, IT (18)
702159Gd649518.5β
703135Ce587717.7β+
704193Au7911417.7β+
705151Tb658617.6β+, α (tr)
70655Co272817.5β+
707152Tb658717.5β+, α (tr)
708188Re7511317.0βIM
709125Xe547116.9β+
71097Zr405716.7β
711186Ir7710916.6β+
71286Zr404616.5β+
71376Br354116.2β+
714119Te526716.1EC, e+ (2.1)
715242Am9514716.0β, EC (17)
716170Hf729816.0β+
717157Eu639415.2β
71824Na111315.0βCG, IM
71976Kr364014.8β+
72086Y394714.7β+
721211Rn8612514.6β+, α (27)
72290Nb414914.6β+
723185Ir7710814.4β+
724240U9214814.1βDP
72572Ga314114.1β
72669mZn303913.8IT, β (tr)
727109Pd466313.7β
72887mY394813.4IT, β+ (1.6)
729123I537013.2β+IM
730191mOs7611513.1IT
731183Os7610713.0β+
732150mEu638712.8β, β+(11)
73364Cu293512.7β+, β (38)IM
734182mRe7510712.7β+
735200Pt7812212.5β
736130I537712.4β
73742K192312.3βIM
738171Hf729912.1β+
739239Am9514411.9β+, α (0.01)
740193mHg8011311.8β+, IT (7.2)
741203Bi8312011.8β+
74277Ge324511.3β
743204Bi8312111.2β+
744189Pt7811110.9β+
745212Pb8213010.6βDP, IM
746195Hg8011510.5β+
747175Ta7310210.5β+
748245Pu9415110.5β
749187Ir7711010.5β+
750165Er689710.4β+
75193Y395410.2β
752244Am9514910.1β
753266Lr10316310.0SF
754154m1Tb65899.99β+, IT(22)
755183mOs761079.90β+, IT(15)
756155Dy66899.90β+
75791Sr38539.63β
758196m2Au791179.60IT
75966Ga31359.49β+
760156Sm62949.40β
761127Te52759.35β
762201Pb821199.33β+
763152mEu63899.31β, β+(28)
76462Zn30329.19β+
765135Xe54819.14β
76658mCo27319.10IT
767128Sb51779.01β
768137Ce58799.00β+
769234Pu941408.80β+, α (~6)
770184Ta731118.70β
771250Es991518.60β+, α (<3)
772101Pd46558.47β+
77352Fe26268.28β+
774173Tm691048.24β
775180Ta731078.15EC, β (14)
776157Dy66918.14β+
777210At851258.10β+, α (0.2)
778176Ta731038.09β+
779166Tm69977.70β+
780256mEs991577.60β
781171Er681037.52β
782199Tl811187.42β+
783211At851267.21β+, α (42)
78473Se34397.15β+
78593mMo42516.85IT, β+ (0.1)
786234Pa911436.70βDP
787135I53826.57β
788107Cd48596.50β+
78982mRb37456.47β+, IT (<0.3)
790153Dy66876.40β+, α (tr)
791127Cs55726.25β+
792228Ac891396.15βDP
79399mTc43566.01IT, β (tr)IM
794145Pr59865.98β
795189mOs761135.81IT
796207Po841235.80β+, α (0.02)
79790Mo42485.56β+
798257Md1011565.52EC, α (15), SF (tr)
799111mPd46655.50IT, β (27)
800139mNd60795.50β+, IT (12)
801180mHf721085.47IT, β (0.3)
802209At851245.41β+, α (4.1)
803113Ag47665.37β
804156m2Tb65915.30IT (?), β+ (?)
805198Tl811175.30β+
806251Fm1001515.30β+, α (1.8)
807138Nd60785.04β+
808160mHo67935.02IT, β+ (27)
809118mSb51675.00β+
810243Pu941494.96β
811192Au791134.94β+
812110In49614.90β+
813133mCe58754.90β+
81494Tc43514.88β+
81585mY39464.86β+, IT (tr)
81673Ga31424.86β
817192Hg801124.85β+
818132La57754.80β+
81999mRh45544.70β+, IT (<0.16)
820267Db1051624.60SF
821179Lu711084.59β
82281Rb37444.57β+IM
823243Bk971464.50β+, α (~0.15)
824115mIn49664.49IT, β (5.0)
82585mKr36494.48β, IT (21)
826105Ru44614.44β
82780mBr35454.42IT
828139Pr59804.41β+
829129Sb51784.40β
830244Bk971474.35β+, α (tr)
831109In49604.20β+
832184Hf721124.12β
833149Tb65844.12β+, α (17)
834110Sn50604.11β+
83544Sc21233.97β+
83671mZn30413.96β, IT (tr)
837141La57843.92β
838133La57763.91β+
83943Sc21223.89β+
840195mIr771183.80β, IT (5)
841193Hg801133.80β+
842176mLu711053.66β, EC (0.1)
843262Lr1031593.60SF, β+, α
844202mPb821203.54IT, β+ (9.5)
84592Y39533.54β
846204Po841203.53β+, α (0.7)
847132Ce58743.51β+
848150Tb65853.48β+, α (tr)
849117mCd48693.36β
85061Cu29323.33β+
851209Pb821273.25βDP
852254Fm1001543.24α, SF (0.06)
853250Bk971533.21β
854161Er68933.21β+
855190mRe751153.20β (54), IT
85690mY39513.19IT, β (tr)
857191Au791123.18β+
858173Ta731003.14β+
859112Ag47653.13β
860247Cf981493.11β+, α (0.04)
861184Ir771073.09β+
862190m3Ir771133.09β+, IT (8.6)
86345Ti22233.08β+
864167Ho671003.00β
865264Lr1031613.00SF
866134Sm62722.91IT
867239Cm961432.90β+, α (tr)
868197Tl811162.84β+
86988Kr36522.84β
87038S16222.84β
87187mSr38492.82IT, EC (0.3)
872117Sb51662.80β+
873224Ac891352.78β+, α (9.4), β(<1.6)
87493Tc43502.75β+
87585Y39462.68β+
876150Pm61892.68β
87792Sr38542.66β
878256Fm1001562.63SF, α (8.1)
87931Si14172.62βCG
88056Mn25312.58β
88165Ni28372.52β
882195Ir771182.50β
883176W741022.50β+
884117Cd48692.49β
885116Te52642.49β+
886141Nd60812.49β+
887161Ho67942.48β+
888210Rn861242.40α (96), β+
889198Pb821162.40β+
890238Cm961422.40β+, α
89183Br35482.40β
892152Dy66862.38β+, α (0.1)IM
893178mTa731052.36β+
894187Pt781092.35β+
895165Dy66992.33β
896132I53792.30β
897158Er68902.29β+
89866Ge32342.26β+
899129Ba56732.23β+
900150Sm62882.22β+, α (tr?)
901177W741032.20β+
902106mRh45612.18β
903129mBa56732.16β+, IT (tr?)
904138mPr59792.12β+
905121I53682.12β+
906127Sn50772.10β
907123Xe54692.08β+
908186Pt781082.08β+, α (tr)
909245Am951502.05β
91089Nb41482.03β+
911195mOs761192.00β, IT (?)
912117mIn49681.94β, IT (47)
913186mIr771091.92β+, IT (~25)
914177Yb701071.91β
915198mTl811171.87β+, IT (44)
916196Tl811151.84β+
91783m2Kr36471.83IT
91818F991.83β+CG,IM
91941Ar18231.83βCG
920163Tm69941.81β+
921239Pa911481.80β
922201Bi831181.80β+, α
923207At851221.80β+, α (~10)
924224Rn861381.78β
92580Sr38421.77β+
926181Os761051.75β+
927205Po841211.74β+, α (0.04)
928149Nd60891.73β
929202Bi831191.72β+, α (tr)
930249Es991501.70β+~, α (0.6)
931147Tb65821.70β+
93287Zr40471.68β+
933126Ba56701.67β+
934113mIn49641.66IT
93561Co27341.65β
93695Ru44511.64β+
937238Am951431.63β+(tr)
938208At851231.63β+, α (0.6)
939133Ce58751.62β+
94075Br35401.61β+
941152m5Eu63891.60IT
942259Md1011581.60SF, α (<1.3)
943197mPt781191.59IT, β (3.3)
944230Ra881421.55β
945142La57851.52β
94678As33451.51β
947199Pb821171.50β+
94878Ge32461.47β
949255Cf981571.42β
950196mTl811151.41β+, IT (3.8)
951196mIr771191.40β, IT (<0.3)
952132mI53791.39IT, β (14)
953139Ba56831.38β
95475Ge32431.38β
955120I53671.36β+
956266Db1051611.33α ?, SF ?, β+ ?
957256Md1011551.28β+, α (9.2), SF (<3)
958137Pr59781.28β+
95987Kr36511.27β
960164Yb70941.26β+
961163Er68951.25β+
96277Kr36411.24β+
963178Yb701081.23β
964237Am951421.22β+(0.03)
965142Sm62801.21β+
96697Nb41561.20β
967185Pt781071.18β+
968195Tl811141.16β+
969129Te52771.16β
970104Ag47571.15β+
971110mIn49611.15β+
972174Ta731011.14β+
97368Ga31371.13β+IM
97485mSr38471.13IT, β+ (13)
975190mIr771131.12IT
976162mHo67951.12IT, β+ (38)
977204m2Pb821221.12IT
97889mNb41481.10β+
979103Ag47561.10β+
980249Cm961531.07β
981183Hf721111.07β
982229Ac891401.05β
983117Te52651.03β+
984240Np931471.03βDP
985182mHf721101.03β, IT (46)
986212Bi831291.01β(36)DP
987116mSb51651.01β+
988148Tb65831.00β+
989270Db1051651.00α, SF, ε?

Radionuclides with half-lives less than 1 second

See also

Sources

Almost all data are taken from reference.[29] For more recent updates, see reference.[30] These sources do not indicate whether certain heavy isotopes starting from Lr, Rf, Db, ... (etc.) were produced, observed, or only predicted from estimated data.

External links

Notes and References

  1. Web site: Discovery of Nuclides Project . Thoennessen . M. . 2 April 2019 . 26 April 2019.
  2. Yan . X. . Cheng . Z. . Abdukerim . A. . etal . Searching for two-neutrino and neutrinoless double beta decay of 134Xe with the PandaX-4T experiment . Physical Review Letters . 132 . 152502 . 2024 . 10.1103/PhysRevLett.132.152502. 2312.15632 .
  3. Beeman . J. W. . Bellini . F. . Cardani . L. . Casali . N. . Di Domizio . S. . Fiorini . E. . Gironi . L. . Nagorny . S. S. . Nisi . S. . Orio . F. . Pattavina . L. . Pessina . G. . Piperno . G. . Pirro . S. . Previtali . E. . Rusconi . C. . Tomei . C. . Vignati . M. . New experimental limits on the α decays of lead isotopes . The European Physical Journal A . 49 . 4 . 2013 . 1434-6001 . 10.1140/epja/i2013-13050-7. 1212.2422 .
  4. Akerib . D S . etal. Search for two neutrino double electron capture of 124Xe and 126Xe in the full exposure of the LUX detector . Journal of Physics G: Nuclear and Particle Physics . 47 . 10 . 2020-10-01 . 0954-3899 . 10.1088/1361-6471/ab9c2d . 105105. 1912.02742 .
  5. Belli . P. . Bernabei . R. . Cappella . F. . Cerulli . R. . Danevich . F. A. . d’Angelo . S. . Incicchitti . A. . Kovtun . G. P. . Kovtun . N. G. . Laubenstein . M. . Poda . D. V. . Polischuk . O. G. . Shcherban . A. P. . Solopikhin . D. A. . Suhonen . J. . Tretyak . V. I. . Search for 2 β decays of 96 Ru and 104 Ru by ultralow-background HPGe γ spectrometry at LNGS: Final results . Physical Review C . 87 . 3 . 2013-03-06 . 0556-2813 . 10.1103/PhysRevC.87.034607. 1302.7134 .
  6. Bikit . I. . Krmar . M. . Slivka . J. . Vesković . M. . Čonkić . Lj. . Aničin . I. . New results on the double β decay of iron . Physical Review C . 58 . 4 . 1998-10-01 . 0556-2813 . 10.1103/PhysRevC.58.2566 . 2566–2567.
  7. Barabash . A. S. . Hubert . Ph. . Marquet . Ch. . Nachab . A. . Konovalov . S. I. . Perrot . F. . Piquemal . F. . Umatov . V. . Improved limits on β+ EC and ECEC processes in 112Sn . Physical Review C . 83 . 4 . 2011-04-21 . 0556-2813 . 10.1103/PhysRevC.83.045503.
  8. Danevich . F. A. . Hult . M. . Junghans . A. . Kasperovych . D. V. . Kropivyansky . B. N. . Lutter . G. . Marissens . G. . Polischuk . O. G. . Romaniuk . M. V. . Stroh . H. . Tessalina . S. . Tretyak . V. I. . Ware . B. . New limits on double-beta decay of 190Pt and 198Pt . The European Physical Journal C . 82 . 1 . 2022 . 1434-6044 . 10.1140/epjc/s10052-022-09989-1. 2201.06555 .
  9. Belli . P. . Bernabei . R. . Boiko . R. S. . Cappella . F. . Caracciolo . V. . Cerulli . R. . Danevich . F. A. . Di Marco . A. . Incicchitti . A. . Kropivyansky . B. N. . Laubenstein . M. . Nisi . S. . Poda . D. V. . Polischuk . O. G. . Tretyak . V. I. . First direct search for 2ϵ and ϵβ+ of 144Sm and 2β- decay of 154Sm . The European Physical Journal A . 55 . 11 . 2019 . 1434-6001 . 10.1140/epja/i2019-12911-3. 1910.02262 .
  10. Belli . P . Bernabei . R . Cappella . F . Cerulli . R . Danevich . F A . d'Angelo . S . Incicchitti . A . Kobychev . V V . Poda . D V . Tretyak . V I . Final results of an experiment to search for 2β processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators . Journal of Physics G: Nuclear and Particle Physics . 38 . 11 . 2011-11-01 . 0954-3899 . 10.1088/0954-3899/38/11/115107 . 115107. 1110.3923 .
  11. Lehnert . B . Wester . T . Degering . D . Sommer . D . Wagner . L . Zuber . K . Double electron capture searches in 74Se . Journal of Physics G: Nuclear and Particle Physics . 43 . 8 . 2016-08-01 . 0954-3899 . 10.1088/0954-3899/43/8/085201 . 085201. 1605.05976 .
  12. Arnquist. I. J.. Avignone III. F. T.. Barabash. A. S.. Barton. C. J.. Bhimani. K. H.. Blalock. E.. Bos. B.. Busch. M.. Buuck. M.. Caldwell. T. S.. Christofferson. C. D.. Chu. P.-H.. Clark. M. L.. Cuesta. C.. Detwiler. J. A.. Efremenko. Yu.. Ejiri. H.. Elliott. S. R.. Giovanetti. G. K.. Goett. J.. Green. M. P.. Gruszko. J.. Guinn. I. S.. Guiseppe. V. E.. Haufe. C. R.. Henning. R.. Aguilar. D. Hervas. Hoppe. E. W.. Hostiuc. A.. Kim. I.. Kouzes. R. T.. Lannen V.. T. E.. Li. A.. López-Castaño. J. M.. Massarczyk. R.. Meijer. S. J.. Meijer. W.. Oli. T. K.. Paudel. L. S.. Pettus. W.. Poon. A. W. P.. Radford. D. C.. Reine. A. L.. Rielage. K.. Rouyer. A.. Ruof. N. W.. Schaper. D. C.. Schleich. S. J.. Smith-Gandy. T. A.. Tedeschi. D.. Thompson. J. D.. Varner. R. L.. Vasilyev. S.. Watkins. S. L.. Wilkerson. J. F.. Wiseman. C.. Xu. W.. Yu. C.-H.. 13 October 2023. Constraints on the Decay of 180mTa. 2306.01965. 10.1103/PhysRevLett.131.152501. 131. 15. 152501. Phys. Rev. Lett..
  13. Broerman . B. . Laubenstein . M. . Nagorny . S. . Song . N. . Vincent . A.C. . A search for rare and induced nuclear decays in hafnium . Nuclear Physics A . 1012 . 2021 . 10.1016/j.nuclphysa.2021.122212 . 122212. 2012.08339 .
  14. Belli . P. . Bernabei . R. . Dai . C.J. . Grianti . F. . He . H.L. . Ignesti . G. . Incicchitti . A. . Kuang . H.H. . Ma . J.M. . Montecchia . F. . Ponkratenko . O.A. . Prosperi . D. . Tretyak . V.I. . Zdesenko . Yu.G. . New limits on spin-dependent coupled WIMPs and on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators . Nuclear Physics B . 563 . 1-2 . 1999 . 10.1016/S0550-3213(99)00618-5 . 97–106.
  15. Belli . P. . Bernabei . R. . Boiko . R.S. . Cappella . F. . Cerulli . R. . Danevich . F.A. . Incicchitti . A. . Kropivyansky . B.N. . Laubenstein . M. . Poda . D.V. . Polischuk . O.G. . Tretyak . V.I. . Search for double beta decay of 136Ce and 138Ce with HPGe gamma detector . Nuclear Physics A . 930 . 2014 . 10.1016/j.nuclphysa.2014.08.072 . 195–208. 1409.2734 .
  16. A. Alessandrello . etal . New Limits on Naturally Occurring Electron Capture of 123Te . Physical Review C . 67 . 1 . 014323 . January 2003 . hep-ex/0211015 . 10.1103/PhysRevC.67.014323. 2003PhRvC..67a4323A . 119523039 .
  17. Belli . P. . Bernabei . R. . Cappella . F. . Caracciolo . V. . Cerulli . R. . Danevich . F. A. . Incicchitti . A. . Kasperovych . D. V. . Kobychev . V. V. . Kovtun . G. P. . Kovtun . N. G. . Laubenstein . M. . Poda . D. V. . Polischuk . O. G. . Shcherban . A. P. . Tessalina . S. . Tretyak . V. I. . Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta . Physical Review C . 102 . 2 . 2020-08-05 . 2469-9985 . 10.1103/PhysRevC.102.024605. 2009.01508 .
  18. Belli . P. . Bernabei . R. . Cappella . F. . Cerulli . R. . Danevich . F.A. . dʼAngelo . S. . Di Vacri . M.L. . Incicchitti . A. . Laubenstein . M. . Nagorny . S.S. . Nisi . S. . Tolmachev . A.V. . Tretyak . V.I. . Yavetskiy . R.P. . First search for double β decay of dysprosium . Nuclear Physics A . 859 . 1 . 2011 . 10.1016/j.nuclphysa.2011.04.003 . 126–139. 1103.5359 .
  19. Search for α decay of naturally occurring Hf-nuclides using a Cs2HfCl6 scintillator . 2020 . V. . Caracciolo . S. . Nagorny . P. . Belli . R. . Bernabei . F. . Cappella . R. . Cerulli . A. . Incicchitti . M. . Laubenstein . V . Merlo . S. . Nisi . P. . Wang . 3 . Nuclear Physics A . 1002 . 121941 . 121941 . 10.1016/j.nuclphysa.2020.121941. 2005.01373 . 2020NuPhA100221941C . 218487451 .
  20. Davis . Andrew M. . 2022 . Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications . Annual Review of Nuclear and Particle Science . 72 . 339–363 . 10.1146/annurev-nucl-010722-074615 . 23 November 2023. free .
  21. Wallner. A.. Faestermann. T.. Feige. J.. Feldstein. C.. Knie. K.. Korschinek. G.. Kutschera. W.. Ofan. A.. Paul. M.. Quinto. F.. Rugel. G.. Steier. P.. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nature Communications. 6. 2015. 5956. 2041-1723. 10.1038/ncomms6956. 25601158. 4309418. 1509.08054. 2015NatCo...6.5956W.
  22. https://www.lpi.usra.edu/meetings/metsoc2007/pdf/5281.pdf Cosmogenic Iron-60 In Iron Meteorites: Measurements By Low-Level Counting.
  23. https://www.hzdr.de/publications/Publ-25521 Interstellar 60Fe detected on Earth - but where is the r-process nuclide 244Pu?
  24. Chiera . Nadine Mariel . Dressler . Rugard . Sprung . Peter . Talip . Zeynep . Schumann . Dorothea . High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154 . Scientific Reports . Springer Science and Business Media LLC . 12 . 1 . 2022-05-28 . 2045-2322 . 10.1038/s41598-022-12684-6. free . 9148308 .
  25. Kajan . I. . Heinitz . S. . Kossert . K. . Sprung . P. . Dressler . R. . Schumann . D. . First direct determination of the 93Mo half-life . Scientific Reports . 11 . 1 . 2021-10-05 . 2045-2322 . 34611245 . 8492754 . 10.1038/s41598-021-99253-5.
  26. Web site: Boutin. Chad. Polonium's Most Stable Isotope Gets Revised Half-Life Measurement. nist.gov. 9 September 2014. NIST Tech Beat. 9 September 2014.
  27. Chiera . Nadine M. . Dressler . Rugard . Sprung . Peter . Talip . Zeynep . Schumann . Dorothea . Determination of the half-life of gadolinium-148 . Applied Radiation and Isotopes . Elsevier BV . 194 . 2023 . 0969-8043 . 10.1016/j.apradiso.2023.110708 . 110708. free .
  28. Web site: SHE Factory first experiment – FLEROV LABORATORY of NUCLEAR REACTIONS.
  29. Jagdish K. Tuli, Nuclear Wallet Cards, 7th edition, April 2005, Brookhaven National Laboratory, US National Nuclear Data Center
  30. https://www.nndc.bnl.gov/nudat2/ Interactive chart of nuclides (Brookhaven National Laboratory)