List of microorganisms tested in outer space explained

The survival of some microorganisms exposed to outer space has been studied using both simulated facilities and low Earth orbit exposures. Bacteria were some of the first organisms investigated, when in 1960 a Russian satellite carried Escherichia coli, Staphylococcus, and Enterobacter aerogenes into orbit.[1] Many kinds of microorganisms have been selected for exposure experiments since, as listed in the table below.

Experiments of the adaption of microbes in space have yielded unpredictable results. While sometimes the microorganism may weaken, they can also increase in their disease-causing potency.

It is possible to classify these microorganisms into two groups, the human-borne and the extremophiles. Studying the human-borne microorganisms is significant for human welfare and future crewed missions in space, whilst the extremophiles are vital for studying the physiological requirements of survival in space.[2] NASA has pointed out that normal adults have ten times as many microbial cells as human cells in their bodies.[3] They are also nearly everywhere in the environment and, although normally invisible, can form slimy biofilms.[3]

Extremophiles have adapted to live in some of the most extreme environments on Earth. This includes hypersaline lakes, arid regions, deep sea, acidic sites, cold and dry polar regions and permafrost.[4] The existence of extremophiles has led to the speculation that microorganisms could survive the harsh conditions of extraterrestrial environments and be used as model organisms to understand the fate of biological systems in these environments. The focus of many experiments has been to investigate the possible survival of organisms inside rocks (lithopanspermia),[2] or their survival on Mars for understanding the likelihood of past or present life on that planet.[2] Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Measuring the resistance of such organisms to space conditions can be applied to develop adequate decontamination procedures.[5]

Research and testing of microorganisms in outer space could eventually be applied for directed panspermia or terraforming.

Table

OrganismLow Earth orbitImpact event and planetary ejectionAtmospheric reentrySimulated conditionsReferences
Actinomyces erythreus [6]
Aeromonas proteolytica
Anabaena cylindrica (akinetes) [7]
Azotobacter chroococcum [8]
Azotobacter vinelandii
Bacillus cereus [9]
Bacillus megaterium [10]
Bacillus mycoides [11]
Bacillus pumilus [12]
Bacillus subtilis [13] [14] [15] [16] [17]
Bacillus thuringiensis [18]
Carnobacterium [19]
Chroococcidiopsis [20] [21] [22]
Clostridium botulinum
Clostridium butyricum [23] [24]
Clostridium celatum
Clostridium mangenotii
Clostridium roseum
Deinococcus aerius [25]
Deinococcus aetherius [26]
Deinococcus geothermalis [27]
Deinococcus radiodurans [28] [29] [30] [31] [32]
Enterobacter aerogenes [33]
Escherichia coli [34] [35]
Gloeocapsa [36]
Gloeocapsopsis pleurocapsoides
Haloarcula-G
Hydrogenomonas eutropha
Klebsiella pneumoniae
Kocuria rosea [37]
Lactobacillus plantarum [38]
Leptolyngbya
Luteococcus japonicus [39]
Micrococcus luteus
Nostoc commune [40]
Nostoc microscopicum
Photobacterium
Pseudomonas aeruginosa
Pseudomonas fluorescens
Rhodococcus erythropolis [41]
Rhodospirillum rubrum [42]
Salmonella enterica [43]
Serratia marcescens
Serratia plymuthica [44]
Staphylococcus aureus
Streptococcus mutans [45]
Streptomyces albus
Streptomyces coelicolor
Synechococcus (halite) [46] [47] [48]
Synechocystis [49]
Symploca
Tolypothrix byssoidea [50]
Halobacterium noricense [51] [52]
Halobacterium salinarum
Halococcus dombrowskii
Halorubrum chaoviatoris
Methanosarcina sp. SA-21/16 [53]
Methanobacterium MC-20
Methanosarcina barkeri
Aspergillus niger
Aspergillus oryzae
Aspergillus terreus [54]
Aspergillus versicolor [55]
Chaetomium globosum
Cladosporium herbarum [56]
Cryomyces antarcticus [57] [58]
Cryomyces minteri
Euglena gracilis [59] [60] [61] [62]
Mucor plumbeus
Nannochloropsis oculata [63] [64] [65]
Penicillium roqueforti
Rhodotorula mucilaginosa
Sordaria fimicola [66]
Trebouxia [67]
Trichoderma koningii [68]
Trichoderma longibrachiatum [69]
Trichophyton terrestre
Ulocladium atrum
Aspicilia fruticulosa [70]
Buellia frigida [71]
Circinaria gyrosa [72]
Rhizocarpon geographicum [73]
Rosenvingiella
Xanthoria elegans [74] [75] [76] [77] [78]
Xanthoria parietina
T7 phage
Canine hepatitis
Influenza PR8
Tobacco mosaic virus [79]
Vaccinia virus
Rhodotorula rubra
Saccharomyces cerevisiae
Saccharomyces ellipsoides
Zygosaccharomyces bailii
Caenorhabditis elegans
(nematode)
[80] [81]
Hypsibius dujardini
(tardigrade)
[82] [83]
Milnesium tardigradum
(tardigrade)
[84] [85] [86]
Richtersius coronifer
(tardigrade)
[87]
Mniobia russeola
(rotifer)

See also

Misc
Low Earth orbit missions:

Notes and References

  1. News: Bacteria get dangerously weird in space. Love. Shayla. 2016-10-26. The Independent. 2016-10-27.
  2. Olsson-Francis . K. . Cockell . C. S. . 2010 . Experimental methods for studying microbial survival in extraterrestrial environments . Journal of Microbiological Methods . 80 . 1 . 1–13 . 10.1016/j.mimet.2009.10.004 . 19854226 . 2013-08-06 . https://web.archive.org/web/20170811202215/http://www1.univap.br/~spilling/AB/Olsson-francis_cockel_2010_astrobiology_Exp.pdf . 2017-08-11 . dead .
  3. http://www.nasa.gov/mission_pages/station/research/news/microorganisms.html NASA – Spaceflight Alters Bacterial Social Networks (2013)
  4. Rothschild . L. J. . Lynn J. Rothschild . Mancinelli . R. L. . 2001 . Life in extreme environments . Nature . 409 . 6823 . 1092–101 . 10.1038/35059215 . 11234023. 2001Natur.409.1092R . 529873 .
  5. Nicholson . W. L. . Moeller . R. . Horneck . G. . 2012 . Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT . Astrobiology . 12 . 5 . 469–86 . 2012AsBio..12..469N . 10.1089/ast.2011.0748 . 22680693.
  6. Dublin . M. . Volz . P. A. . 1973 . Space-related research in mycology concurrent with the first decade of manned space exploration . Space Life Sciences . 4 . 2 . 223–30 . 1973SLSci...4..223D . 10.1007/BF00924469 . 4598191. 11871141 .
  7. Olsson-Francis . K. . de la Torre . R. . Towner . M. C. . Cockell . C. S. . 2009 . Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions . Origins of Life and Evolution of Biospheres . 39 . 6 . 565–579 . 2009OLEB...39..565O . 10.1007/s11084-009-9167-4. 19387863 . 7228756 .
  8. Moll . D. M. . Vestal . J. R. . 1992 . Survival of microorganisms in smectite clays: Implications for Martian exobiology . Icarus . 98 . 2 . 233–9 . 1992Icar...98..233M . 10.1016/0019-1035(92)90092-L . 11539360.
  9. Hagen . C. A. . Hawrylewicz . E. J. . Ehrlich . R. . 1967 . Survival of Microorganisms in a Simulated Martian Environment: II. Moisture and Oxygen Requirements for Germination of Bacillus cereus and Bacillus subtilis var. Niger Spores . Applied Microbiology . 15 . 2 . 285–291 . 10.1128/AEM.15.2.285-291.1967 . 546892 . 4961769.
  10. Hawrylewicz . E. . Gowdy . B. . Ehrlich . R. . 1962 . Micro-organisms under a Simulated Martian Environment . Nature . 193 . 4814 . 497 . 1962Natur.193..497H . 10.1038/193497a0. 4149916 . free .
  11. Imshenetskiĭ . A. A. . Murzakov . B. G. . Evdokimova . M. D. . Dorofeeva . I. K. . 1984 . Survival of bacteria in the Artificial Mars unit . Mikrobiologiia . 53 . 5 . 731–7 . 6439981.
  12. Horneck . G. . 2012 . Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission . Astrobiology . 12 . 5. 445–56 . 2012AsBio..12..445H . 10.1089/ast.2011.0737 . 3371261 . 22680691.
  13. Hotchin . J. . Lorenz . P. . Hemenway . C. . 1965 . Survival of Micro-Organisms in Space . Nature . 206 . 4983 . 442–445 . 1965Natur.206..442H . 10.1038/206442a0. 4284122 . 4156325 .
  14. Horneck . G. . Bücker . H. . Reitz . G. . 1994 . Long-term survival of bacterial spores in space . Advances in Space Research . 14 . 10 . 41–5 . 1994AdSpR..14j..41H . 10.1016/0273-1177(94)90448-0 . 11539977.
  15. Fajardo-Cavazos . P. . Link . L. . Melosh . H. J. . Nicholson . W. L. . 2005 . Bacillus subtilisSpores on Artificial Meteorites Survive Hypervelocity Atmospheric Entry: Implications for Lithopanspermia . Astrobiology . 5 . 6 . 726–36 . 2005AsBio...5..726F . 10.1089/ast.2005.5.726 . 16379527.
  16. Brandstätter . F. . 2008 . Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment . Planetary and Space Science . 56 . 7 . 976–984 . 2008P&SS...56..976B . 10.1016/j.pss.2007.12.014. 10.1.1.549.4307 .
  17. Wassmann . M. . 2012 . Survival of Spores of the UV-ResistantBacillus subtilisStrain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E . Astrobiology . 12 . 5 . 498–507 . 2012AsBio..12..498W . 10.1089/ast.2011.0772 . 22680695.
  18. Taylor . G. R. . Bailey . J. V. . Benton . E. V. . 1975 . Physical dosimetric evaluations in the Apollo 16 microbial response experiment . Life Sciences in Space Research . 13 . 135–41 . 11913418.
  19. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars . PNAS USA . 24 December 2012 . Nicholson . Wayne L. . Krivushin . Kirill . Gilichinsky . u . Schuerger . Andrew C. . 110 . 2 . 666–671 . 10.1073/pnas.1209793110 . 23267097 . 2013PNAS..110..666N . 3545801 . free .
  20. Cockell . C. S. . Schuerger . A. C. . Billi . D. . Imre Friedmann . E. . Panitz . C. . 2005 . Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029 . Astrobiology . 5 . 2 . 127–140 . 2005AsBio...5..127C . 10.1089/ast.2005.5.127 . 15815164.
  21. Billi. D. . 2011 . Damage Escape and Repair in Dried Chroococcidiopsis spp. From Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions . Astrobiology . 11 . 1 . 65–73 . 2011AsBio..11...65B . 10.1089/ast.2009.0430 . 21294638.
  22. The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes . Acta Astronautica. 20 August 2013. Baqué . Mickael. de Vera . Jean-Pierre . Rettberg . Petra. Billi . Daniela. 91 . 180–186 . 10.1016/j.actaastro.2013.05.015 . 2013AcAau..91..180B.
  23. Parfenov . G. P. . Lukin . A. A. . 1973 . Results and prospects of microbiological studies in outer space . Space Life Sciences . 4 . 1. 160–179 . 1973SLSci...4..160P . 10.1007/BF02626350. 4576727 . 11421221 .
  24. Koike . J. . 1996 . Fundamental studies concerning planetary quarantine in space . Advances in Space Research . 18 . 1–2 . 339–44 . 1996AdSpR..18a.339K . 10.1016/0273-1177(95)00825-Y . 11538982.
  25. Survival and DNA damage of cell-aggregate of Deinococcus SPP. Exposed to space for two-years in Tanpopo mission . 2018cosp...42E1714K . Kawaguchi . Yuko . Hashimoto . Hirofumi . Yokobori . Shin-Ichi . Yamagishi . Akihiko . Shibuya . Mio . Kinoshita . Iori . Hayashi . Risako . Yatabe . Jun . Narumi . Issay . Fujiwara . Daisuke . Murano . Yuka . 42nd COSPAR Scientific Assembly . 2018 . 42 .
  26. 10.1089/ast.2017.1751 . 18 . Environmental Data and Survival Data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station Obtained by the Tanpopo Mission . 2018 . Astrobiology . 1369–1374 . Yamagishi Akihiko, Kawaguchi Yuko, Hashimoto Hirofumi, Yano Hajime, Imai Eiichi, Kodaira Satoshi, Uchihori Yukio, Nakagawa Kazumichi. 11 . 30289276 . 2018AsBio..18.1369Y . 52920452 .
  27. http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-930.pdf BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic cells of Deinococcus geothermalis as Mission Preparation Tests
  28. Dose . K. . 1995 . ERA-experiment "space biochemistry" . Advances in Space Research . 16 . 8 . 119–29 . 1995AdSpR..16h.119D . 10.1016/0273-1177(95)00280-R . 11542696.
  29. Mastrapa . R. M. E . Glanzberg . H. . Head . J. N . Melosh . H. J . Nicholson . W. L . 2001 . Survival of bacteria exposed to extreme acceleration: Implications for panspermia . Earth and Planetary Science Letters . 189 . 1–2. 1–8 . 2001E&PSL.189....1M . 10.1016/S0012-821X(01)00342-9.
  30. De La Vega . U. P. . Rettberg . P. . Reitz . G. . 2007 . Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans . Advances in Space Research . 40 . 11 . 1672–1677 . 2007AdSpR..40.1672D . 10.1016/j.asr.2007.05.022.
  31. News: Strickland . Ashley . Bacteria from Earth can survive in space and could endure the trip to Mars, according to new study . 26 August 2020 . . 26 August 2020 .
  32. Kawaguchi, Yuko . et al. . DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space . 26 August 2020 . . 11 . 2050 . 10.3389/fmicb.2020.02050 . 32983036 . 7479814 . free .
  33. Young . R. S. . Deal . P. H. . Bell . J. . Allen . J. L. . 1964 . Bacteria under simulated Martian conditions . Life Sciences in Space Research . 2 . 105–11 . 11881642.
  34. Grigoryev . Y. G. . 1972 . Influence of Cosmos 368 space flight conditions on radiation effects in yeasts, hydrogen bacteria and seeds of lettuce and pea . Life Sciences in Space Research . 10 . 113–8 . 11898831.
  35. Willis . M. . Ahrens . T. . Bertani . L. . Nash . C. . 2006 . Bugbuster—survivability of living bacteria upon shock compression . Earth and Planetary Science Letters . 247 . 3–4 . 185–196 . 2006E&PSL.247..185W . 10.1016/j.epsl.2006.03.054.
  36. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth . The ISME Journal . 19 May 2011 . Cockell . Charles S. . Rettberg . Petra . Rabbow . Elke . Olson-Francis . Karen . 5 . 10 . 1671–1682 . 10.1038/ismej.2011.46 . free . 21593797 . 3176519. 2011ISMEJ...5.1671C .
  37. Imshenetskiĭ . A. A. . Kuzyurina . L. A. . Yakshina . V.M. . 1979 . Xerophytic microorganisms multiplying under conditions close to Martian ones . Mikrobiologiia . 48 . 1 . 76–9 . 106224.
  38. Hawrylewicz . E. . Hagen . C. A. . Tolkacz . V. . Anderson . B. T. . Ewing . M. . 1968 . Probability of growth pG of viable microorganisms in Martian environments . Life Sciences in Space Research VI . 146–156.
  39. Zhukova . A. I. . Kondratyev . I. I. . 1965 . On artificial Martian conditions reproduced for microbiological research . Life Sciences in Space Research . 3 . 120–6 . 12199257.
  40. Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions . International Journal of Astrobiology . 3 August 2015 . Jänchena . Jochen . Feyha . Nina . Szewzyka . Ulrich . de Vera . Jean-Pierre P. . 10.1017/S147355041500018X . free. 15 . 2 . 107–118. 2016IJAsB..15..107J .
  41. Burchell . M. . 2001 . Survivability of Bacteria in Hypervelocity Impact . Icarus . 154 . 2. 545–547 . 2001Icar..154..545B . 10.1006/icar.2001.6738.
  42. Roberts . T. L. . Wynne . E. S. . 1962 . Studies with a simulated Martian environment . Journal of the Astronautical Sciences . 10 . 65–74.
  43. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions . Astrobiology . 1 September 2016 . Raktim . Roy . Phani . Shilpa P. . Sangram . Bagh . 16 . 9 . 677–689 . 10.1089/ast.2015.1420 . 2016AsBio..16..677R . 27623197.
  44. Roten . C. A. . Gallusser . A. . Borruat . G. D. . Udry . S. D. . Karamata . D. . 1998 . Impact resistance of bacteria entrapped in small meteorites . Bulletin de la Société Vaudoise des Sciences Naturelles . 86 . 1 . 1–17.
  45. Koike . J. . Oshima . T. . Kobayashi . K. . Kawasaki . Y. . 1995 . Studies in the search for life on Mars . Advances in Space Research . 15 . 3 . 211–4 . 1995AdSpR..15c.211K . 10.1016/S0273-1177(99)80086-6 . 11539227.
  46. Mancinelli . R. L. . White . M. R. . Rothschild . L. J. . 1998 . Biopan-survival I: Exposure of the osmophiles Synechococcus SP. (Nageli) and Haloarcula SP. To the space environment . Advances in Space Research . 22 . 3 . 327–334 . 1998AdSpR..22..327M . 10.1016/S0273-1177(98)00189-6.
  47. Web site: 26 April 2013 . Expose-R: Exposure of Osmophilic Microbes to Space Environment . NASA. https://web.archive.org/web/20130407021600/http://www.nasa.gov/mission_pages/station/research/experiments/211.html . dead . 7 April 2013 . 2013-08-07.
  48. The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R . International Journal of Astrobiology . January 2015 . Mancinelli . R. L. . 14 . Special Issue 1 . 123–128 . 10.1017/S147355041400055X . 2015-05-09 . 2015IJAsB..14..123M . 44120218 .
  49. Klementiev . K. E. . Maksimov . E. G. . Gvozdev . D. A. . Tsoraev . G. V. . etal . 2019 . Radioprotective role of cyanobacterial phycobilisomes . Biochimica et Biophysica Acta (BBA) - Bioenergetics . 1860 . 2 . 121–128 . 10.1016/j.bbabio.2018.11.018. 30465750 . free .
  50. Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions . International Journal of Astrobiology . 17 October 2013 . de Vera . J. P. . Dulai . S. . Kereszturi . A. . Koncz . L. . Pocs . T. . 35–44 . 10.1017/S1473550413000323 . 13. 1 . 2014IJAsB..13...35D . 83647440 .
  51. Stan-Lotter . H. . 2002 . Astrobiology with haloarchaea from Permo-Triassic rock salt . International Journal of Astrobiology . 1 . 4 . 271–284 . 2002IJAsB...1..271S . 10.1017/S1473550403001307. 86665831 .
  52. Web site: Extreme Halophiles Are Models for Astrobiology . dead . https://web.archive.org/web/20110722193334/http://forms.asm.org/microbe/index.asp?bid=41227 . 2011-07-22 . Shiladitya DasSarma . American Society for Microbiology.
  53. Morozova . D. . Möhlmann . D. . Wagner . D. . 2006 . Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions . Origins of Life and Evolution of Biospheres . 37 . 2 . 189–200 . 2007OLEB...37..189M . 10.1007/s11084-006-9024-7. 17160628 . 15620946 .
  54. Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation . Planetary and Space Science . 59 . 1 . 2011 . Sarantopoulou . E. . Gomoiu . I. . Kollia . Z. . Cefalas . A.C. . 63–78 . 10.1016/j.pss.2010.11.002 . 2011P&SS...59...63S. 10442/15561 . free .
  55. Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the 'Expose-R' experiment . International Journal of Astrobiology . January 2015 . Novikova . N. . Deshevaya . E. . Levinskikh . M. . Polikarpov . N. . Poddubko . S. . 137–142 . 10.1017/S1473550414000731 . 14. 1 . 2015IJAsB..14..137N . 85458386 . free .
  56. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum . Journal of Applied Physics . 2014 . Sarantopoulou . E. . Stefi . A. . Kollia . Z. . Palles . D. . Petrou . .P.S. . Bourkoula . A. . Koukouvinos . G. . Velentzas . A.D. . Kakabakos . S. . Cefalas . A.C. . 104701 . 10.1063/1.4894621 . 116. 10 . 2014JAP...116j4701S .
  57. News: Wall . Mike . Fungi Survive Mars-Like Conditions On Space Station . Space.com . January 29, 2016 . 2016-01-29 .
  58. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests . 10.1007/s11084-016-9485-2 . 2017 . Pacelli . Claudia . Selbmann . Laura . Zucconi . Laura . De Vera . Jean-Pierre . Rabbow . Elke . Horneck . Gerda . de la Torre . Rosa . Onofri . Silvano . Origins of Life and Evolution of Biospheres . 47 . 2 . 187–202 .
  59. Aquacells — Flagellates under long-term microgravity and potential usage for life support systems . Häder DP, Richter PR, Strauch SM, et al . Microgravity Sci. Technol. . 2006 . 18 . 210 . 210–214 . 10.1007/BF02870411. 2006MicST..18..210H . 121659796 .
  60. The influence of microgravity on Euglena gracilis as studied on Shenzhou 8 . Nasir A, Strauch SM, Becker I, Sperling A, Schuster M, Richter PR, Weißkopf M, Ntefidou M, Daiker V, An YA, Li XY, Liu YD, Lebert M, Legué V . 2014 . Plant Biol J . 16 . 113–119 . 10.1111/plb.12067. 23926886 . 2014PlBio..16S.113N .
  61. 10.1017/S1473550417000131 . 17 . Restart capability of resting-states of Euglena gracilis after 9 months of dormancy: preparation for autonomous space flight experiments . 2018 . International Journal of Astrobiology . 101–111 . Strauch Sebastian M., Becker Ina, Pölloth Laura, Richter Peter R., Haag Ferdinand W. M., Hauslage Jens, Lebert Michael. 2 . 2018IJAsB..17..101S . 90868067 .
  62. 10.1016/j.jplph.2009.07.009 . 167 . The beating pattern of the flagellum of Euglena gracilis under altered gravity during parabolic flights . 2010 . Journal of Plant Physiology . 41–46 . Strauch S.M., Richter P., Schuster M., Häder D.-P.. 1 . 19679374 .
  63. Pasini . J. L. S. . Price . M. C. . Panspermia survival scenarios for organisms that survive typical hypervelocity solar system impact events . 46th Lunar and Planetary Science Conference . 2015 .
  64. Pasini D. L. S. et al. LPSC44, 1497. (2013).
  65. Pasini D. L. S. et al. EPSC2013, 396. (2013).
  66. Zimmermann . M. W. . Gartenbach . K. E. . Kranz . A. R. . 1994 . First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores . Advances in Space Research . 14 . 10 . 47–51 . 1994AdSpR..14j..47Z . 10.1016/0273-1177(94)90449-9 . 11539984.
  67. UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances . International Journal of Astrobiology . 6 September 2013 . Sánchez . Francisco Javier . Meeßen . Joachim . Ruiza . M. del Carmen . Sancho . Leopoldo G. . de la Torre . Rosa . 13 . 1 . 1–18 . 10.1017/S147355041300027X . 2014IJAsB..13....1S . free .
  68. Web site: 26 April 2013 . Expose-R: Exposure of Osmophilic Microbes to Space Environment . NASA. https://web.archive.org/web/20130407021600/http://www.nasa.gov/mission_pages/station/research/experiments/211.html . dead . 7 April 2013 . 2013-08-07.
  69. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R . International Journal of Astrobiology . January 2015 . Neuberger . Katja . Lux-Endrich . Astrid . Panitz . Corinna . Horneck . Gerda . 14 . Special Issue 1 . 129–135 . 10.1017/S1473550414000408 . 2015IJAsB..14..129N. 121455217 .
  70. Raggio . J. . 2011 . Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment withAspicilia fruticulosa . Astrobiology . 11 . 4 . 281–92 . 2011AsBio..11..281R . 10.1089/ast.2010.0588 . 21545267.
  71. Resistance of the Lichen Buellia frigida to Simulated Space Conditions during the Preflight Tests for BIOMEX—Viability Assay and Morphological Stability . Astrobiology . August 2015 . Meeßen . J. . Wuthenow . P. . Schille . P. . Rabbow . E. . de Vera . J.-P.P . 15 . 8 . 601–615 . 10.1089/ast.2015.1281 . 2015AsBio..15..601M . 26218403 . 4554929.
  72. 10.1089/ast.2015.1454 . 17 . The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa . 2017 . Astrobiology . 145–153 . Rosa, Zélia Miller Ana, Cubero Beatriz, Martín-Cerezo M. Luisa, Raguse Marina, Meeßen Joachim . 2 . 28206822 . 2017AsBio..17..145D .
  73. de La Torre Noetzel . R. . 2007 . BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem . Advances in Space Research . 40 . 11 . 1665–1671 . 2007AdSpR..40.1665D . 10.1016/j.asr.2007.02.022.
  74. Sancho . L. G. . 2007 . Lichens survive in space: Results from the 2005 LICHENS experiment . Astrobiology . 7 . 3 . 443–54 . 2007AsBio...7..443S . 10.1089/ast.2006.0046 . 17630840.
  75. De Vera . J.-P. . Horneck . G. . Rettberg . P. . Ott . S. . 2004 . The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: Germination capacity of lichen ascospores in response to simulated space conditions . Advances in Space Research . 33 . 8. 1236–43 . 2004AdSpR..33.1236D . 10.1016/j.asr.2003.10.035 . 15806704.
  76. Horneck . G. . 2008 . Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested . Astrobiology . 8 . 1 . 17–44 . 2008AsBio...8...17H . 10.1089/ast.2007.0134 . 18237257.
  77. 2014 . Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS . International Journal of Astrobiology . 14. 3. 411–425. 10.1017/S1473550414000214 . Brandt . Annette . De Vera . Jean-Pierre . Onofri . Silvano . Ott . Sieglinde . 2015IJAsB..14..411B . free .
  78. Horneck G, et al . 2008 . Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. 10.1089/ast.2007.0134 . Astrobiology . 8 . 1. 17–44 . 18237257. 2008AsBio...8...17H .
  79. Hotchin . J. . 1968 . The Microbiology of Space . Journal of the British Interplanetary Society . 21 . 122 . 1968JBIS...21..122H.
  80. 10.1242/jeb.02365 . 209 . Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight . 2006 . Journal of Experimental Biology . 3209–3218 . Higashibata A. 16 . 16888068 . free .
  81. https://www.nasa.gov/mission_pages/station/research/experiments/644.html International Caenorhabditis elegans Experiment First Flight-Genomics (ICE-First-Genomics)
  82. Pasini D. L. S. et al. LPSC45, 1789.(2014).
  83. Pasini D. L. S. et al. EPSC2014, 67. (2014).
  84. Jönsson . K. I. . Rabbow . E. . Schill . Ralph O. . Harms-Ringdahl . M. . Rettberg . P. . 2008 . Tardigrades survive exposure to space in low Earth orbit . Current Biology . 18 . 17 . R729–R731 . 10.1016/j.cub.2008.06.048 . 18786368. 8566993 . free . 2008CBio...18.R729J .
  85. Web site: 17 May 2011 . BIOKon In Space (BIOKIS) . https://web.archive.org/web/20110417085459/http://www.nasa.gov/mission_pages/station/research/experiments/BIOKIS.html . dead . 17 April 2011 . . 2011-05-24.
  86. Web site: Brennard . Emma . 17 May 2011 . Tardigrades: Water bears in space . . 2011-05-24.
  87. Jönsson. K. Ingemar. Wojcik. Andrzej. Tolerance to X-rays and Heavy Ions (Fe, He) in the Tardigrade Richtersius coronifer and the Bdelloid Rotifer Mniobia russeola. Astrobiology. 17. 2. February 2017. 163–167. 1531-1074. 10.1089/ast.2015.1462. 28206820. 2017AsBio..17..163J.