List of mathematical series explained
See also: Summation.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.
is taken to have the value
denotes the fractional part of
is a
Bernoulli polynomial.
is a
Bernoulli number, and here,
is an
Euler number.
is the
Riemann zeta function.
is the
gamma function.
is a
polygamma function.
is a
polylogarithm.
is
binomial coefficient
denotes
exponential of
Sums of powers
See Faulhaber's formula.
The first few values are:
See zeta constants.
The first few values are:
(the
Basel problem)
Power series
Low-order polylogarithms
Finite sums:
, (
geometric series)
k2zk=z
| 1+z-(n+1)2zn+(2n2+2n-1)zn+1-n2zn+2 |
(1-z)3 |
Infinite sums, valid for
(see
polylogarithm):
\operatorname{Li}n(z)=\sum
The following is a useful property to calculate low-integer-order polylogarithms recursively in
closed form:
\operatorname{Li}1
=-ln(1-z)
\operatorname{Li}-3
k3zk=
\operatorname{Li}-4
k4zk=
Exponential function
(cf. mean of
Poisson distribution)
(cf. second moment of Poisson distribution)
where
is the
Touchard polynomials.
Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship
| (-1)k-1(22k-1)22kB2kz2k-1 |
(2k)! |
=\tanz,|z|<
| (-1)k-1(22k-2)B2kz2k-1 |
(2k)! |
=\cscz,|z|<\pi
=\operatorname{csch}z,|z|<\pi
=\operatorname{sech}z,|z|<
(
versine)
[1] (haversine)
| (-1)k(2k)!z2k+1 |
22k(k!)2(2k+1) |
=\operatorname{arcsinh}{z},|z|\le1
=\operatorname{arctanh}z,|z|<1
| (-1)k-1(2k)!z2k |
22k+1k(k!)2 |
=ln\left(1+\sqrt{1+z2}\right),|z|\le1
\left(k ⋅ \operatorname{arctanh}\left(
\right)-1\right)=
Modified-factorial denominators
}}, |z|<1
[2]
z2k+2=\left(\arcsin{z}\right)2,|z|\le1
[2]
}, |z|\le1
Binomial coefficients
(1+z)\alpha=
{\alpha\choosek}zk,|z|<1
(see)
{{\alpha+k-1}\choosek}zk=
,|z|<1
}, |z|\leq\frac,
generating function of the
Catalan numbers
}, |z|<\frac, generating function of the
Central binomial coefficients
}\left(\frac\right)^\alpha, |z|<\frac
Harmonic numbers
(See harmonic numbers, themselves defined , and
generalized to the real numbers)
zk+1=
\left[ln(1-z)\right]2, |z|<1
z2k+1=
\arctan{z}log{(1+z2)}, |z|<1
[2]
},\qquad |z|<1
[2]
Binomial coefficients
See main article: Binomial coefficient.
{n\choosek}2={2n\choosen}
(-1)k{n\choosek}=0,wheren\geq1
{k\choosem}={n+1\choosem+1}
{m+k-1\choosek}={n+m\choosen}
(see Multiset)
{\alpha\choosek}{\beta\choosen-k}={\alpha+\beta\choosen},where \alpha+\beta\geqn
(see
Vandermonde identity)
\sumA(E)}1=2n,whereEisafiniteset,andcard(E)=n
\sum\begin{cases(A, B) \in (l{P}(E))2\ A \subset B\end{cases}}1=3n,whereEisafiniteset,andcard(E)=n
\sumA(E)}card(A)=n2n-1,whereEisafiniteset,andcard(E)=n
Trigonometric functions
Sums of sines and cosines arise in Fourier series.
ln(2-2\cos\theta)=-ln\left(2\sin
\right),0<\theta<2\pi
ln(2+2\cos\theta)=ln\left(2\cos
\right),0\leq\theta<\pi
ln(2\sin\theta),0<\theta<\pi
ln\left(\cot
\right),0<\theta<\pi
,
[4]
=\pi\left(\dfrac{1}{2}-\{x\}\right), x\inR
| \sin\left(2\pikx\right) |
k2n-1 |
=(-1)n
B2n-1(\{x\}), x\inR, n\inN
| \cos\left(2\pikx\right) |
k2n |
=(-1)n-1
B2n(\{x\}), x\inR, n\inN
\cos\left(2\pikx-
\right),0<x<1
[5] | n | |
\sum | | \sin(\theta+k\alpha)= |
| k=0 | |
| n | |
\sum | | \cos(\theta+k\alpha)= |
| k=0 | |
[6]
Rational functions
[7]
| infty | (2n+1)(-1)n | (2n+1)2+a2 |
|
\sum | |
| n=0 |
=
sech\left(
\right)
\displaystyle
=\dfrac{1}{8a4}+\dfrac{\pi(\sinh(2\pia)+\sin(2\pia))}{8a3(\cosh(2\pia)-\cos(2\pia))}
can be reduced to a finite series of
polygamma functions, by use of
partial fraction decomposition,
[8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Exponential function
\displaystyle
| p-1 |
\dfrac{1}{\sqrt{p}}\sum | |
| n=0 |
\exp\left(
\right)=\dfrac{e\pi
}\sum_^\exp \left(-\frac \right)(see the
Landsberg–Schaar relation)
Numeric series
These numeric series can be found by plugging in numbers from the series listed above.
Alternating harmonic series
Sum of reciprocal of factorials
}\cos \frac\right)
\left(\cos1+\cosh1\right)
Trigonometry and π
(\pi\operatorname{csch}\pi-1)
Reciprocal of tetrahedral numbers
Where
Exponential and logarithms
, that is
See also
References
Notes and References
- Web site: Eric W. . Weisstein . Eric W. Weisstein . Haversine . . . 2015-11-06 . live . https://web.archive.org/web/20050310194740/http://mathworld.wolfram.com/Haversine.html . 2005-03-10.
- Book: Wilf, Herbert R.. generatingfunctionology. 1994. Academic Press, Inc.
- Web site: Theoretical computer science cheat sheet.
- Calculate the Fourier expansion of the function
on the interval
:
inftycn\sin[nx]+dn\cos[nx]
⇒
odd)\\
0 (neven)\end{cases}\ dn=0 (\foralln)\end{cases}
- Web site: Bernoulli polynomials: Series representations (subsection 06/02). 2 June 2011. Wolfram Research.
- Web site: Hofbauer. Josef. A simple proof of 1 + 1/22 + 1/32 + ··· = 2/6 and related identities. 2 June 2011.
- Web site: Sondow. Jonathan. Weisstein. Eric W.. Riemann Zeta Function (eq. 52). MathWorld—A Wolfram Web Resource.
- Book: http://people.math.sfu.ca/~cbm/aands/page_260.htm. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Milton. Abramowitz. Milton Abramowitz. Irene. Stegun. Irene Stegun. 1964. 0-486-61272-4. 260. 6.4 Polygamma functions. Courier Corporation .