List of integrals of logarithmic functions explained

The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals.

Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.

Integrals involving only logarithmic functions

\intlogaxdx=xlogax-

x
lna

=

x
lna

(lnx-1)

\intln(ax)dx=xln(ax)-x=x(ln(ax)-1)

\intln(ax+b)dx=

ax+b
a

(ln(ax+b)-1)

\int(lnx)2dx=x(lnx)2-2xlnx+2x

\int(lnx)ndx=(-1)nn!x

n
\sum
k=0
(-lnx)k
k!

\int

dx
lnx

=ln|lnx|+lnx+

infty
\sum
k=2
(lnx)k
kk!

\int

dx
lnx

=\operatorname{li}(x)

, the logarithmic integral.

\int

dx
(lnx)n

=-

x
(n-1)(lnx)n-1

+

1\int
n-1
dx
(lnx)n-1

   (forn1)

\intlnf(x)dx=xlnf(x)-\intx

f'(x)
f(x)

dx    (fordifferentiablef(x)>0)

Integrals involving logarithmic and power functions

\intxmlnxdx=xm+1\left(

lnx-
m+1
1
(m+1)2

\right)    (form-1)

\intxm(lnx)ndx=

xm+1(lnx)n
m+1

-

n
m+1

\intxm(lnx)n-1dx    (form-1)

\int

(lnx)ndx
x

=

(lnx)n+1
n+1

   (forn-1)

\int

lnxdx
xm

=-

lnx-
(m-1)xm-1
1
(m-1)2xm-1

   (form1)

\int

(lnx)ndx
xm

=-

(lnx)n
(m-1)xm-1

+

n\int
m-1
(lnx)n-1dx
xm

   (form1)

\int

xmdx
(lnx)n

=-

xm+1
(n-1)(lnx)n-1

+

m+1\int
n-1
xmdx
(lnx)n-1

   (forn1)

\int

dx
xlnx

=ln\left|lnx\right|

\int

dx
xlnxlnlnx

=ln\left|ln\left|lnx\right|\right|

, etc.

\int

dx
xlnlnx

=\operatorname{li}(lnx)

\int

dx
xnlnx

=ln\left|lnx\right|+

infty
\sum
k=1
k(n-1)k(lnx)k
kk!
(-1)

\int

dx
x(lnx)n

=-

1
(n-1)(lnx)n-1

   (forn1)

\intln(x2+a2)dx=xln(x2+a2)-2x+2a\tan-1

x
a

\int

x
x2+a2

ln(x2+a2)dx=

1
4

ln2(x2+a2)

Integrals involving logarithmic and trigonometric functions

\int\sin(lnx)dx=

x
2

(\sin(lnx)-\cos(lnx))

\int\cos(lnx)dx=

x
2

(\sin(lnx)+\cos(lnx))

Integrals involving logarithmic and exponential functions

\intex\left(xlnx-x-

1
x

\right)dx=ex(xlnx-x-lnx)

\int

1
ex

\left(

1
x

-lnx\right)dx=

lnx
ex

\intex\left(

1
lnx

-

1
x(lnx)2

\right)dx=

ex
lnx

n consecutive integrations

For

n

consecutive integrations, the formula

\intlnxdx=x(lnx-1)+C0

generalizes to

\int...i\intlnxdx...mdx=

xn
n!
n
\left(lnx-\sum
k=1
1
k

\right)+

n-1
\sum
k=0

Ck

xk
k!

References