List of integrals of inverse trigonometric functions explained

The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse trigonometric functions. For a complete list of integral formulas, see lists of integrals.

Arcsine function integration formulas

\int\arcsin(x)dx= x\arcsin(x)+ {\sqrt{1-x2}}+C

\int\arcsin(ax)dx=x\arcsin(ax)+

\sqrt{1-a2x2
}+C

\intx\arcsin(ax)dx=

x2\arcsin(ax)
2

-

\arcsin(ax)
4a2

+

x\sqrt{1-a2x2
}+C

\intx2\arcsin(ax)dx=

x3\arcsin(ax)
3

+

\left(a2x2+2\right)\sqrt{1-a2x2
}+C

\intxm\arcsin(ax)dx=

xm+1\arcsin(ax)
m+1

-

a
m+1

\int

xm+1
\sqrt{1-a2x2
}\,dx\,,\quad(m\ne-1)

\int\arcsin(ax)2dx= -2x+x\arcsin(ax)2+

2\sqrt{1-a2x2
\arcsin(ax)}{a}+C

\int\arcsin(ax)ndx= x\arcsin(ax)n+

n\sqrt{1-a2x2
\arcsin(ax)

n-1

}\,-\, n\,(n-1)\int\arcsin(ax)^\,dx

\int\arcsin(ax)ndx=

x\arcsin(ax)n+2
(n+1)(n+2)

+

\sqrt{1-a2x2
\arcsin(ax)

n+1

}\,-\, \frac\int\arcsin(ax)^\,dx\,,\quad(n\ne-1,-2)

Arccosine function integration formulas

\int\arccos(x)dx= x\arccos(x)- {\sqrt{1-x2}}+C

\int\arccos(ax)dx= x\arccos(ax)-

\sqrt{1-a2x2
}+C

\intx\arccos(ax)dx=

x2\arccos(ax)
2

-

\arccos(ax)
4a2

-

x\sqrt{1-a2x2
}+C

\intx2\arccos(ax)dx=

x3\arccos(ax)
3

-

\left(a2x2+2\right)\sqrt{1-a2x2
}+C

\intxm\arccos(ax)dx=

xm+1\arccos(ax)
m+1

+

a
m+1

\int

xm+1
\sqrt{1-a2x2
}\,dx\,,\quad(m\ne-1)

\int\arccos(ax)2dx= -2x+x\arccos(ax)2-

2\sqrt{1-a2x2
\arccos(ax)}{a}+C

\int\arccos(ax)ndx= x\arccos(ax)n-

n\sqrt{1-a2x2
\arccos(ax)

n-1

}\,-\, n\,(n-1)\int\arccos(ax)^\,dx

\int\arccos(ax)ndx=

x\arccos(ax)n+2
(n+1)(n+2)

-

\sqrt{1-a2x2
\arccos(ax)

n+1

}\,-\, \frac\int\arccos(ax)^\,dx\,,\quad(n\ne-1,-2)

Arctangent function integration formulas

\int\arctan(x)dx= x\arctan(x)-

ln\left(x2+1\right)
2

+C

\int\arctan(ax)dx= x\arctan(ax)-

ln\left(a2x2+1\right)
2a

+C

\intx\arctan(ax)dx=

x2\arctan(ax)
2

+

\arctan(ax)-
2a2
x
2a

+C

\intx2\arctan(ax)dx=

x3\arctan(ax)
3

+

ln\left(a2x2+1\right)-
6a3
x2
6a

+C

\intxm\arctan(ax)dx=

xm+1\arctan(ax)
m+1

-

a
m+1

\int

xm+1
a2x2+1

dx,(m\ne-1)

Arccotangent function integration formulas

\int\arccot(x)dx= x\arccot(x)+

ln\left(x2+1\right)
2

+C

\int\arccot(ax)dx= x\arccot(ax)+

ln\left(a2x2+1\right)
2a

+C

\intx\arccot(ax)dx=

x2\arccot(ax)
2

+

\arccot(ax)+
2a2
x
2a

+C

\intx2\arccot(ax)dx=

x3\arccot(ax)
3

-

ln\left(a2x2+1\right)+
6a3
x2
6a

+C

\intxm\arccot(ax)dx=

xm+1\arccot(ax)
m+1

+

a
m+1

\int

xm+1
a2x2+1

dx,(m\ne-1)

Arcsecant function integration formulas

\int\arcsec(x)dx=x\arcsec(x)- ln\left(\left|x\right|+\sqrt{x2-1}\right)+C= x\arcsec(x)-\operatorname{arcosh}|x|+C

\int\arcsec(ax)dx= x\arcsec(ax)-

1
a

\operatorname{arcosh}|ax|+C

\intx\arcsec(ax)dx=

x2\arcsec(ax)
2

-

x\sqrt{1-
2a
1
a2x2
}+C

\intx2\arcsec(ax)dx=

x3\arcsec(ax)
3

-

\operatorname{arcosh
|ax|}{6a

3}-

x2\sqrt{1-
6a
1
a2x2
}\,+\,C

\intxm\arcsec(ax)dx=

xm+1\arcsec(ax)
m+1

-

1
a(m+1)

\int

xm-1
\sqrt{1-1
a2x2
}\,dx\,,\quad(m\ne-1)

Arccosecant function integration formulas

\int\arccsc(x)dx=x\arccsc(x)+ln\left(\left|x\right|+\sqrt{x2-1}\right)+C= x\arccsc(x)+\operatorname{arcosh}|x|+C

\int\arccsc(ax)dx=x\arccsc(ax)+

1\operatorname{artanh}\sqrt{1-
a
1
a2x2
}+C

\intx\arccsc(ax)dx=

x2\arccsc(ax)
2

+

x\sqrt{1-
2a
1
a2x2
}+C

\intx2\arccsc(ax)dx=

x3\arccsc(ax)
3

+

1\operatorname{artanh}\sqrt{1-
6a3
1
a2x2
}\,+\, \frac\sqrt\,+\,C

\intxm\arccsc(ax)dx=

xm+1\arccsc(ax)
m+1

+

1
a(m+1)

\int

xm-1
\sqrt{1-1
a2x2
}\,dx\,,\quad(m\ne-1)

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "List of integrals of inverse trigonometric functions".

Except where otherwise indicated, Everything.Explained.Today is © Copyright 2009-2024, A B Cryer, All Rights Reserved. Cookie policy.