The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse trigonometric functions. For a complete list of integral formulas, see lists of integrals.
\int\arcsin(x)dx= x\arcsin(x)+ {\sqrt{1-x2}}+C
\int\arcsin(ax)dx=x\arcsin(ax)+
\sqrt{1-a2x2 | |
\intx\arcsin(ax)dx=
x2\arcsin(ax) | |
2 |
-
\arcsin(ax) | |
4a2 |
+
x\sqrt{1-a2x2 | |
\intx2\arcsin(ax)dx=
x3\arcsin(ax) | |
3 |
+
\left(a2x2+2\right)\sqrt{1-a2x2 | |
\intxm\arcsin(ax)dx=
xm+1\arcsin(ax) | |
m+1 |
-
a | |
m+1 |
\int
xm+1 | |
\sqrt{1-a2x2 |
\int\arcsin(ax)2dx= -2x+x\arcsin(ax)2+
2\sqrt{1-a2x2 | |
\arcsin(ax)}{a}+C |
\int\arcsin(ax)ndx= x\arcsin(ax)n+
n\sqrt{1-a2x2 | |
\arcsin(ax) |
n-1
\int\arcsin(ax)ndx=
x\arcsin(ax)n+2 | |
(n+1)(n+2) |
+
\sqrt{1-a2x2 | |
\arcsin(ax) |
n+1
\int\arccos(x)dx= x\arccos(x)- {\sqrt{1-x2}}+C
\int\arccos(ax)dx= x\arccos(ax)-
\sqrt{1-a2x2 | |
\intx\arccos(ax)dx=
x2\arccos(ax) | |
2 |
-
\arccos(ax) | |
4a2 |
-
x\sqrt{1-a2x2 | |
\intx2\arccos(ax)dx=
x3\arccos(ax) | |
3 |
-
\left(a2x2+2\right)\sqrt{1-a2x2 | |
\intxm\arccos(ax)dx=
xm+1\arccos(ax) | |
m+1 |
+
a | |
m+1 |
\int
xm+1 | |
\sqrt{1-a2x2 |
\int\arccos(ax)2dx= -2x+x\arccos(ax)2-
2\sqrt{1-a2x2 | |
\arccos(ax)}{a}+C |
\int\arccos(ax)ndx= x\arccos(ax)n-
n\sqrt{1-a2x2 | |
\arccos(ax) |
n-1
\int\arccos(ax)ndx=
x\arccos(ax)n+2 | |
(n+1)(n+2) |
-
\sqrt{1-a2x2 | |
\arccos(ax) |
n+1
\int\arctan(x)dx= x\arctan(x)-
ln\left(x2+1\right) | |
2 |
+C
\int\arctan(ax)dx= x\arctan(ax)-
ln\left(a2x2+1\right) | |
2a |
+C
\intx\arctan(ax)dx=
x2\arctan(ax) | |
2 |
+
\arctan(ax) | - | |
2a2 |
x | |
2a |
+C
\intx2\arctan(ax)dx=
x3\arctan(ax) | |
3 |
+
ln\left(a2x2+1\right) | - | |
6a3 |
x2 | |
6a |
+C
\intxm\arctan(ax)dx=
xm+1\arctan(ax) | |
m+1 |
-
a | |
m+1 |
\int
xm+1 | |
a2x2+1 |
dx, (m\ne-1)
\int\arccot(x)dx= x\arccot(x)+
ln\left(x2+1\right) | |
2 |
+C
\int\arccot(ax)dx= x\arccot(ax)+
ln\left(a2x2+1\right) | |
2a |
+C
\intx\arccot(ax)dx=
x2\arccot(ax) | |
2 |
+
\arccot(ax) | + | |
2a2 |
x | |
2a |
+C
\intx2\arccot(ax)dx=
x3\arccot(ax) | |
3 |
-
ln\left(a2x2+1\right) | + | |
6a3 |
x2 | |
6a |
+C
\intxm\arccot(ax)dx=
xm+1\arccot(ax) | |
m+1 |
+
a | |
m+1 |
\int
xm+1 | |
a2x2+1 |
dx, (m\ne-1)
\int\arcsec(x)dx=x\arcsec(x)- ln\left(\left|x\right|+\sqrt{x2-1}\right)+C= x\arcsec(x)-\operatorname{arcosh}|x|+C
\int\arcsec(ax)dx= x\arcsec(ax)-
1 | |
a |
\operatorname{arcosh}|ax|+C
\intx\arcsec(ax)dx=
x2\arcsec(ax) | |
2 |
-
x | \sqrt{1- | |
2a |
1 | |
a2x2 |
\intx2\arcsec(ax)dx=
x3\arcsec(ax) | |
3 |
-
\operatorname{arcosh | |
|ax|}{6a |
3}-
x2 | \sqrt{1- | |
6a |
1 | |
a2x2 |
\intxm\arcsec(ax)dx=
xm+1\arcsec(ax) | |
m+1 |
-
1 | |
a(m+1) |
\int
xm-1 | |||
|
\int\arccsc(x)dx=x\arccsc(x)+ln\left(\left|x\right|+\sqrt{x2-1}\right)+C= x\arccsc(x)+\operatorname{arcosh}|x|+C
\int\arccsc(ax)dx=x\arccsc(ax)+
1 | \operatorname{artanh}\sqrt{1- | |
a |
1 | |
a2x2 |
\intx\arccsc(ax)dx=
x2\arccsc(ax) | |
2 |
+
x | \sqrt{1- | |
2a |
1 | |
a2x2 |
\intx2\arccsc(ax)dx=
x3\arccsc(ax) | |
3 |
+
1 | \operatorname{artanh}\sqrt{1- | |
6a3 |
1 | |
a2x2 |
\intxm\arccsc(ax)dx=
xm+1\arccsc(ax) | |
m+1 |
+
1 | |
a(m+1) |
\int
xm-1 | |||
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "List of integrals of inverse trigonometric functions".
Except where otherwise indicated, Everything.Explained.Today is © Copyright 2009-2024, A B Cryer, All Rights Reserved. Cookie policy.