List of hyperaccumulators explained

This article covers known hyperaccumulators, accumulators or species tolerant to the following: Aluminium (Al), Silver (Ag), Arsenic (As), Beryllium (Be), Chromium (Cr), Copper (Cu), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Naphthalene, Lead (Pb), Selenium (Se) and Zinc (Zn).

See also:

Hyperaccumulators table – 1

Accumulation rates (in mg/kg dry weight) Binomial name English name H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant Notes Sources
AlA- Agrostis castellana highland bentgrass As(A), Mn(A), Pb(A), Zn(A) Origin: Portugal. [1]
Al1000 Hordeum vulgare 25 records of plants. [2]
AlHydrangea spp. Hydrangea (a.k.a. Hortensia)
AlAluminium concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.[3] Melastoma malabathricum L. Blue Tongue, or Native Lassiandra P competes with Al and reduces uptake.[4]
AlSolidago hispida (Solidago canadensis L.) Hairy Goldenrod Origin Canada.
Al100 Vicia faba
Ag10-1200 Salix miyabeana Willow Ag(T) Seemed able to adapt to high concentrations on a long timeline [5]
AgBrassica napus Rapeseed plant Cr, Hg, Pb, Se, Zn Phytoextraction [6]
AgSalix spp. Osier spp. Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products; Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] Phytoextraction. Perchlorate (wetland halophytes)
AgAmanita strobiliformis European Pine Cone Lepidella Ag(H) Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas [9]
Ag10-1200 Brassica juncea Indian Mustard Ag(H) Can form alloys of silver-gold-copper [10]
As100 Agrostis capillaris L. Common Bent Grass, Browntop. (= A. tenuris) Al(A), Mn(A), Pb(A), Zn(A)
AsH- Agrostis castellana Highland Bent Grass Al(A), Mn(A), Pb(A), Zn(A) Origin Portugal.
As1000 Agrostis tenerrima Trin. Colonial bentgrass 4 records of plants [11]
As2-1300 Cyanoboletus pulverulentusInk Stain Bolete contains dimethylarsinic acid Europe [12]
As27,000 (fronds)[13] Pteris vittata L. Ladder brake fern or Chinese brake fern 26% of As in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[14] Root extracts reduce arsenate to arsenite.[15]
As100-7000 Sarcosphaera coronaria pink crown, violet crown-cup, or violet star cup As(H) Ectomycorrhizal ascomycete, known from Europe [16] [17]
BeNo reports found for accumulation
Cr Azolla spp. mosquito fern, duckweed fern, fairy moss, water fern [18]
Cr H- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [19]
Cr Brassica juncea L. Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) Cultivated in agriculture. [20]
Cr Brassica napus Rapeseed plant Ag, Hg, Pb, Se, Zn Phytoextraction
Cr A- Vallisneria americana Tape Grass Cd(H), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade.
Cr 1000 Dicoma niccolifera 35 records of plants
Cr roots naturally absorb pollutants, some organic compounds believed to be carcinogenic,[21] in concentrations 10,000 times that in the surrounding water.[22] Eichhornia crassipes Cd(H), Cu(A), Hg(H), Pb(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24] Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates.[25] 'The troublesome weed' – hence an excellent source of bioenergy.
Cr Helianthus annuus Sunflower
Cr A- Hydrilla verticillata Hydrilla Cd(H), Hg(H), Pb(H)
Cr Medicago sativa Alfalfa [26]
Cr Pistia stratiotes Water lettuce Cd(T), Hg(H), Cr(H), Cu(T) [27]
Cr Salix spp. Osier spp. Ag, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products; Cd, Pb, U, Zn (S. viminalix); Potassium ferrocyanide (S. babylonica L.) Phytoextraction. Perchlorate (wetland halophytes)
Cr Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) [28]
Cr Spirodela polyrhiza Cd(H), Ni(H), Pb(H), Zn(A) Native to North America.
Cr100 Jamesbrittenia fodina Hilliard
Sutera fodina Wild
[29] [30]
CrA- Thlaspi caerulescens Alpine Pennycress, Alpine Pennygrass Cd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[31] [32] [33] [34]
Cu 9000 Aeollanthus biformifolius [35]
Cu Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Pb(H), Zn(H) Origin Japan.
Cu A- Azolla filiculoides Pacific mosquitofern Ni(A), Pb(A), Mn(A) Origin Africa. Floating plant.
Cu H- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cr(H), Hg(A), Pb(A) Origin India. Aquatic emergent species.
Cu Brassica juncea L. Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) cultivated
Cu H- Vallisneria americana Tape Grass Cd(H), Cr(A), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade.
Cu Eichhornia crassipes Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U, and pesticides. Pantropical/Subtropical, 'the troublesome weed'.
Cu 1000 Haumaniastrum robertii
(Lamiaceae)
Copper flower 27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[36]
Cu Helianthus annuus
Cu 1000 Larrea tridentata Creosote Bush 67 records of plants. Origin U.S.
Cu H- Lemna minor Pb(H), Cd(H), Zn(A) Native to North America and widespread worldwide.
Cu Ocimum centraliafricanum Copper plant Cu(T), Ni(T) Origin Southern Africa [37]
Cu T- Pistia stratiotes Water Lettuce Cd(T), Hg(H), Cr(H) Pantropical. Origin South U.S.A. Aquatic herb.
Cu Thlaspi caerulescens Alpine pennycress, Alpine Pennycress, Alpine Pennygrass Cd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. Cu noticeably limits its growth.
Mn A- Agrostis castellana Highland Bent Grass Al(A), As(A), Pb(A), Zn(A) Origin Portugal.
Mn Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Pb(A) Origin Africa. Floating plant.
Mn Brassica juncea L.
Mn 23,000 (maximum) 11,000 (average) leaf Chengiopanax sciadophylloides (Franch. & Sav.) C.B.Shang & J.Y.Huang koshiabura Origin Japan. Forest tree. [38]
Mn Helianthus annuus
Mn 1000 Macadamia neurophylla
(now Virotia neurophylla (Guillaumin) P. H. Weston & A. R. Mast)
28 records of plants [39]
Mn 200
Hg A- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cr(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species.
Hg Brassica napus Rapeseed plant Ag, Cr, Pb, Se, Zn Phytoextraction
Hg Eichhornia crassipes Cd(H), Cr(A), Cu(A), Pb(H), Zn(A). Also Cs, Sr, U, and pesticides. Pantropical/Subtropical, 'the troublesome weed'.
Hg H- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Pb(H)
Hg 1000 Pistia stratiotes Water lettuce Cd(T), Cr(H), Cu(T) 35 records of plants [40]
Hg Salix spp. Osier spp. Ag, Cr, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products; Cd, Pb, U, Zn (S. viminalix); Potassium ferrocyanide (S. babylonica L.) Phytoextraction. Perchlorate (wetland halophytes)
Mo 1500 Thlaspi caerulescens (Brassicaceae) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H) phytoextraction
Festuca arundinacea Tall Fescue Increases catabolic genes and the mineralization of naphthalene. [41]
Trifolium hirtum Pink clover, rose clover Decreases catabolic genes and the mineralization of naphthalene.
Pb A- Agrostis castellana Al(A), As(H), Mn(A), Zn(A) Origin Portugal.
Pb Ambrosia artemisiifolia Ragweed
Pb Armeria maritima Seapink Thrift
Pb Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Zn(H) Origin Japan.
Pb A- Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Mn(A) Origin Africa. Floating plant.
Pb A- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cr(H), Cu(H), Hg(A) Origin India. Aquatic emergent species.
Pb H- Brassica juncea Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) 79 recorded plants. Phytoextraction [42]
Pb Brassica napus Rapeseed plant Ag, Cr, Hg, Se, Zn Phytoextraction
Pb Brassica oleracea Ornamental Kale and Cabbage, Broccoli
Pb H- Vallisneria americana Tape Grass Cd(H), Cr(A), Cu(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade.
Pb Eichhornia crassipes Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U, and pesticides. Pantropical/Subtropical, 'the troublesome weed'.
Pb Festuca ovina Blue Sheep Fescue
Pb Ipomoea trifida
PbH- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Hg(H)
Pb H- Lemna minor Cd(H), Cu(H), Zn(H) Native to North America and widespread worldwide.
Pb Salix viminalis Cd, U, Zn, Ag, Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products (S. spp.); Potassium ferrocyanide (S. babylonica L.) Phytoextraction. Perchlorate (wetland halophytes)
Pb H- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India.
Pb Spirodela polyrhiza Cd(H), Cr(H), Ni(H), Zn(A) Native to North America.
Pb Thlaspi caerulescens (Brassicaceae) Alpine pennycress, Alpine pennygrass Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H) Phytoextraction.
Pb Thlaspi rotundifolium Round-leaved Pennycress
Pb Triticum aestivum Common Wheat
Se .012-20 Amanita muscaria Cap contains higher concentrations than stalks[43]
Se Brassica juncea Rhizosphere bacteria enhance accumulation.[44]
Se Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Zn Phytoextraction.
Se Low rates of selenium volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of selenium in Muskgrass. Chara canescens Desv. & Lois Muskgrass Muskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate.[45] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization.[46] [47]
Se Bassia scoparia
(a.k.a. Kochia scoparia)
burningbush, ragweed, summer cypress, fireball, belvedere and Mexican firebrush, Mexican fireweedU, Cr, Pb, Hg, Ag, Zn Perchlorate (wetland halophytes). Phytoextraction.
Se Salix spp. Osier spp. Ag, Cr, Hg, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products; Cd, Pb, U, Zn (S. viminalis); Potassium ferrocyanide (S. babylonica L.) Phytoextraction. Perchlorate (wetland halophytes).
Zn A- Agrostis castellana Highland Bent Grass Al(A), As(H), Mn(A), Pb(A) Origin Portugal.
Zn Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Pb(H) Origin Japan.
Zn Brassicaceae Mustards, mustard flowers, crucifers or cabbage family Cd(H), Cs(H), Ni(H), Sr(H) Phytoextraction
Zn Brassica juncea L. Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A). Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997)
Zn Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Se Phytoextraction
Zn Helianthus annuus
Zn Eichhornia crassipes Cd(H), Cr(A), Cu(A), Hg(H), Pb(H). Also Cs, Sr, U, and pesticides. Pantropical/Subtropical, 'the troublesome weed'.
Zn Salix viminalis Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products; Cd, Pb, U (S. viminalis); Potassium ferrocyanide (S. babylonica L.) Phytoextraction. Perchlorate (wetland halophytes).
Zn A- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India.
Zn 1400 Silene vulgaris (Moench) Garcke (Caryophyllaceae) Ernst et al. (1990)
Zn Spirodela polyrhiza Cd(H), Cr(H), Ni(H), Pb(H) Native to North America.
Zn H-10,000 Thlaspi caerulescens (Brassicaceae) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H) 48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal
Zn Trifolium pratense Red Clover Nonmetal accumulator. Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but T. caerulescens has relatively more metal-resistant bacteria.

Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.

Notes and References

  1. Book: McCutcheon . Steven C. . Schnoor . Jerald L. . Phytoremediation: Transformation and Control of Contaminants . 2003 . Wiley . 978-0-471-39435-8 . Environmental Science and Technology.
  2. Grauer . U. E. . Horst . W. J. . Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.) . Plant and Soil . September 1990 . 127 . 1 . 13–21 . 10.1007/BF00010832 . Springer . 42938620. 1990PlSoi.127...13G . 31201518 .
  3. Toshihiro Watanabe . Mitsuru Osaki . Teruhiko Yoshihara . Toshiaki Tadano . Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L. . Plant and Soil . 201 . 2 . 165–173 . April 1998 . 10.1023/A:1004341415878 . 8649008.
  4. Shoellhorn . Rick . Richardson . Alexis A. . Warm Climate Production Guidelines for Japanese Hydrangeas . EDIS . 2005 . 2005 . 4 . 10.32473/edis-ep177-2005 . Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida . ENH910/EP177. free .
  5. 10.1080/15226514.2013.856840 . Nissim . Werther G. . Pitre . Frederic E. . Kadri . Hafssa . Desjardins . Dominic . Labrecque . Michel . Early Response Of Willow To Increasing Silver Concentration Exposure . International Journal of Phytoremediation . 16 . 4. 660–670. 2014 . 24933876 . 2014IJPhy..16..660G . 1000307 .
  6. Web site: Fiegl . Joseph L. . McDonnell . Bryan P. . Kostel . Jill A. . Finster . Mary E. . Gray . Kimberly A. . A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils . Civil and Environmental Engineering . McCormick School of Engineering, Northwestern University . https://web.archive.org/web/20110224034628/http://www.civil.northwestern.edu/ehe/html_kag/kimweb/MEOP/INDEX.HTM . 24 February 2011 . Evanston, IL.
  7. Ulrich . Schmidt . Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals . Journal of Environmental Quality . 32 . 6 . 1939–54 . 2003 . 14674516 . 10.2134/jeq2003.1939 . Plant and Soil Interaction.
  8. Yu . Xiao-Zhang . Zhou . Pu-Hua . Yang . Yong-Miao . The potential for phytoremediation of iron cyanide complex by willows . Ecotoxicology . 15 . 5 . 461–7 . July 2006 . 16703454 . 10.1007/s10646-006-0081-5 . 2006Ecotx..15..461Y . 5930089 .
  9. Borovička . Jan . Řanda . Zdeněk . Jelínek . Emil . Kotrba . Pavel . Dunn . Colin E. . Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella . Mycological Research . November 2007 . 111 . 11 . 1339–1344 . 10.1016/j.mycres.2007.08.015. 18023163.
  10. 10.1007/s11051-006-9198-y . Richard G. . Haverkamp . Aaron T. . Marshall . Dimitri . van Agterveld . Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo . Journal of Nanoparticle Research . 9 . 4. 697–700 . 2007 . 2007JNR.....9..697H . 56368453 .
  11. Porter . E. K. . Peterson . P. J. . Arsenic accumulation by plants on mine waste (United Kingdom) . Science of the Total Environment . November 1975 . 4 . 4 . 365–371 . 10.1016/0048-9697(75)90028-5 . Elsevier. 1975ScTEn...4..365P .
  12. 10.1016/j.foodchem.2017.09.038 . Braeuer . Simone . Goessler . Walter . Kameník . Jan . Konvalinková . Tereza . Žigová . Anna . Borovička . Jan . Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus) . Food Chemistry . 242 . 225–231 . 2018 . 6118325 . 29037683 .
  13. Junru Wang . Fang-Jie Zhao . Andrew A. Meharg . Andrea Raab . Joerg Feldmann . Steve P. McGrath . Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation . Plant Physiol . 130 . 3 . 1552–61 . November 2002 . 12428020 . 166674 . 10.1104/pp.008185 . free.
  14. Cong . Tu . Lena Q. . Ma . Bhaskhar . Bondada . Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation. Journal of Environmental Quality. 31. 5. 1671–5. 2002. 10.2134/jeq2002.1671. 12371185. 2002JEnvQ..31.1671T .
  15. Gui-Lan . Duan . Yong-Guan . Zhu . Yi-Ping . Tong . Chao . Cai . Ralf . Kneer . Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator . Plant Physiology . 138 . 1 . 461–9 . 2005 . 15834011 . 1104199 . 10.1104/pp.104.057422 . free.
  16. Stijve . Tjakko . Vellinga . Else C. . Herrmann . André . Arsenic accumulation in some higher fungi . Persoonia - Molecular Phylogeny and Evolution of Fungi . 1990 . 14 . 2 . 161–166 .
  17. Borovička . Jan . Nová lokalita baňky velkokališné . Mykologický sborník . 2004 . 81 . 3 . 97–99 . New location for Sarcosphaera coronaria . Czech Mycological Society . Prague . cs.
  18. Priel . A. . Purification of industrial wastewater with the Azolla fern . World Water and Environmental Engineering . 18.
  19. Gupta . Manisha . Sinha . Sarita . Chandra . Prakash . Uptake and toxicity of metals in Scirpus lacustris L. and Bacopa monnieri l. . Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology . 1994 . 29 . 10 . 2185–2202 . 10.1080/10934529409376173 . Taylor & Francis. 1994JESHA..29.2185G .
  20. Bennett . Lindsay E. . Burkhead . Jason L. . Hale . Kerry L. . Terry . Norman . Pilon . Marinus . Pilon-Smits . Elizabeth A. H. . Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings . Journal of Environmental Quality . March 2003 . 32 . 2 . 432–440 . 10.2134/jeq2003.4320 . 12708665. 2003JEnvQ..32..432B .
  21. Web site: Duke . James A. . Handbook of Energy Crops . NewCROP . Center for New Crops and Plant Products, Purdue University . 3 January 2023 . West Lafayette, IN . 1983.
  22. Biology Briefs. BioScience . 26 . 3 . 223–224 . 1976 . 10.2307/1297259. 1297259 .
  23. Web site: Phytoremediation of Radionuclides . Colorado State University . https://web.archive.org/web/20120111174116/http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm . 11 January 2012.
  24. Jun-Kang . Lan . Recent developments of phytoremediation . Journal of Geological. Hazards and Environmental Preservation . 15 . 1 . 46–51 . March 2004 . dead . https://web.archive.org/web/20110520035859/http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=6028544&q=&uid=788532439&setcookie=yes . 20 May 2011 .
  25. Book: Göhl . Bo . International Foundation for Science . Tropical feeds. Feeds information summaries and nutritive values . 1981 . Food and Agriculture Organization of the United Nations . Stockholm . FAO Animal Production and Health . 12.
  26. Interference studies for multi-metal binding by Medicago sativa (alfalfa) . Tiemann . Kirk J. . Jorge L. . Gardea-Torresdey . Jorge Gardea-Torresdey . Gerardo . Gamez . Kenneth M. . Dokken . May 1998 . Conference on Hazardous Waste Research . https://engg.k-state.edu/hsrc/98Proceed/ . Proceedings of the 1998 Conference on Hazardous Waste Research . Snowbird, UT . 63–75 . Metals.
  27. Sen . A. K. . Mondal . N. G. . Mandal . S. . Studies of Uptake and Toxic Effects of Cr(VI) on Pistia stratiotes . Water Science and Technology . 1 January 1987 . 19 . 1–2 . 119–127 . 10.2166/wst.1987.0194 . International Water Association.
  28. Srivastav . R. K. . Gupta . S. K. . Nigam . K. D. P. . Vasudevan . P. . Treatment of chromium and nickel in wastewater by using aquatic plants . Water Research . July 1994 . 28 . 7 . 1631–1638 . 10.1016/0043-1354(94)90231-3. 1994WatRe..28.1631S .
  29. Wild . Hiram . Hiram Wild . Indigenous plants and chromium in Rhodesia . Kirkia . 1974 . 9 . 2 . 233–241 . Zimbabwe's National Herbarium and Botanic Garden . 23502019.
  30. Brooks . Robert R. . Yang . Xing-hua . Elemental Levels and Relationships in the Endemic Serpentine Flora of the Great Dyke, Zimbabwe and Their Significance as Controlling Factors for the Flora . Taxon . August 1984 . 33 . 3 . 392 . 10.2307/1220976 . Wiley . 1220976.
  31. Delorme . Thierry A. . Gagliardi . Joel V. . Angle . J. Scott . Chaney . Rufus L. . Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations . Canadian Journal of Microbiology . 2001 . 47 . 8 . 773–776 . 10.1139/w01-067 . 11575505 . Canadian Science Publishing.
  32. Majeti Narasimha Vara Prasad . Nickelophilous plants and their significance in phytotechnologies . Brazilian Journal of Plant Physiology . 17 . 1 . 113–128. 2005 . 10.1590/s1677-04202005000100010. free .
  33. Baker . Alan J. M. . Brooks . Robert R. . Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry . Biorecovery . 1989 . 1 . 81–126 . 0269-7572.
  34. Enzo . Lombi . Fang-Jie . Zhao . Sarah J. . Dunham . Steve P. . McGrath . Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction . Journal of Environmental Quality . 30 . 6 . 1919–1926 . 2001 . 11789997 . 10.2134/jeq2001.1919. 2001JEnvQ..30.1919L .
  35. Morrison . Richard S. . Brooks . Robert R. . Reeves . Roger D. . Malaisse . François . Copper and cobalt uptake by metallophytes from Zaïre . Plant and Soil . 1979 . 53 . 4 . 535–539 . 10.1007/bf02140724 . 42737843 . 2268/266081 . Kluwer. 1979PlSoi..53..535M .
  36. Robert R. . Brooks . Copper and cobalt uptake by Haumaniustrum species . Plant and Soil. 48. 2. 541–544. 1977. 10.1007/BF02187261. 1977PlSoi..48..541B . 12181174 .
  37. Howard-Williams . Clive . 1970 . The ecology of Becium homblei in Central Africa with special reference to metalliferous soils . Journal of Ecology . 58 . 3 . 745–763 . 10.2307/2258533. 2258533 . 1970JEcol..58..745H .
  38. Mizuno. Takafumi. Emori. Kanae. Ito. Shin-ichiro. Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. and Sav. and its correlation with calcium accumulation. Soil Science and Plant Nutrition. 2013. 59. 4. 591–602. 10.1080/00380768.2013.807213. 97458219 . free. 2013SSPN...59..591M .
  39. Book: Baker . Alan J. M. . Walker . Philip L. . Shaw . A. Jonathan . Heavy metal tolerance in plants: evolutionary aspects . 1990 . CRC Press . Boca Raton, FL. . 0-8493-6852-9 . 155–177 . Ecophysiology of Metal Uptake by Tolerant Plants.
  40. Atri 1983
  41. Steven D. . Siciliano . James J. . Germida . Kathy . Banks . Charles W. . Greer . Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial . Applied and Environmental Microbiology . 69 . 1 . 483–9 . January 2003 . 12514031 . 152433 . 10.1128/AEM.69.1.483-489.2003. 2003ApEnM..69..483S .
  42. Interstate Technology and Regulatory Council . 2009 . Phytotechnology Technical and Regulatory Guidance and Decision Trees, Revised . PHYTO-3 .
  43. Tjakko . Stijve . Selenium content of mushrooms . Zeitschrift für Lebensmittel-Untersuchung und -Forschung A . 164 . 3 . 201–3 . September 1977 . 10.1007/BF01263031 . 562040 . 31058569 .
  44. Mark P. . de Souza . Dara . Chu . May . Zhao . Adel M. . Zayed . Steven E. . Ruzin . Denise . Schichnes . Norman . Terry . Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard . Plant Physiology . 119 . 2 . 565–574 . 1999 . 9952452 . 32133 . 10.1104/pp.119.2.565.
  45. X-ray absorption spectroscopy speciation analysis.
  46. Average Se concentration of 22 μg/L supplied over a 24-d experimental period.
  47. Z.-Q. Lin . M.P. de Souza . I. J. Pickering . N. Terry . Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms . Journal of Environmental Quality . 31 . 6 . 2104–10 . 2002 . 12469862 . 10.2134/jeq2002.2104. 2002JEnvQ..31.2104L .