List of gravitationally rounded objects of the Solar System explained

This is a list of most likely gravitationally rounded objects (GRO) of the Solar System, which are objects that have a rounded, ellipsoidal shape due to their own gravity (but are not necessarily in hydrostatic equilibrium). Apart from the Sun itself, these objects qualify as planets according to common geophysical definitions of that term. The radii of these objects range over three orders of magnitude, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies, but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined. The Sun's orbital characteristics are listed in relation to the Galactic Center, while all other objects are listed in order of their distance from the Sun.

Star

See main article: Sun.

The Sun is a G-type main-sequence star. It contains almost 99.9% of all the mass in the Solar System.[1]

Sun[2] [3]
Symbol (image)
Symbol (Unicode)
Discovery yearPrehistoric
Mean distance
from the Galactic Center
km
light years
≈ 2.5
≈ 26,000
Mean radiuskm
:E
695,508
109.3
Surface areakm2
:E
6.0877
11,990
Volumekm3
:E
1.4122
1,300,000
Masskg
:E
1.9855
332,978.9
Gravitational parameterm3/s21.327×1020
Densityg/cm31.409
Equatorial gravitym/s2
g
274.0
27.94
Escape velocitykm/s617.7
Rotation perioddays25.38
Orbital period about Galactic Center[4] million years225–250
Mean orbital speedkm/s≈ 220
Axial tilt to the eclipticdeg.7.25
Axial tilt to the galactic planedeg.67.23
Mean surface temperatureK5,778
Mean coronal temperature[5] K1–2
Photospheric compositionHHeOCFeS

Planets

See main article: Planet.

In 2006, the International Astronomical Union (IAU) defined a planet as a body in orbit around the Sun that was large enough to have achieved hydrostatic equilibrium and to have "cleared the neighbourhood around its orbit".[6] The practical meaning of "cleared the neighborhood" is that a planet is comparatively massive enough for its gravitation to control the orbits of all objects in its vicinity. In practice, the term "hydrostatic equilibrium" is interpreted loosely. Mercury is round but not actually in hydrostatic equilibrium, but it is universally regarded as a planet nonetheless.[7]

According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than 99% of the mass of the Solar System.

style="background-color: #eeffee; vertical-align: top;"
° Gas giant
× Ice giant
  °Jupiter[17] [18] °Saturn[19] [20] ×Uranus[21] [22] ×Neptune[23] [24]
Symbol or
Symbol (Unicode)⛢ or ♅
Discovery yearPrehistoricPrehistoricPrehistoricPrehistoricPrehistoricPrehistoric17811846
Mean distance
from the Sun
km
AU
57,909,175
0.38709893
108,208,930
0.72333199
149,597,890
1.00000011
227,936,640
1.52366231
778,412,010
5.20336301
1,426,725,400
9.53707032
2,870,972,200
19.19126393
4,498,252,900
30.06896348
Equatorial radiuskm
:E
2,440.53
0.3826
6,051.8
0.9488
6,378.1366
1
3,396.19
0.53247
71,492
11.209
60,268
9.449
25,559
4.007
24,764
3.883
Surface areakm2
:E
75,000,000
0.1471
460,000,000
0.9020
510,000,000
1
140,000,000
0.2745
64,000,000,000
125.5
44,000,000,000
86.27
8,100,000,000
15.88
7,700,000,000
15.10
Volumekm3
:E
6.083
0.056
9.28
0.857
1.083
1
1.6318
0.151
1.431
1,321.3
8.27
763.62
6.834
63.102
6.254
57.747
Masskg
:E
3.302
0.055
4.8690
0.815
5.972
1
6.4191
0.107
1.8987
318
5.6851
95
8.6849
14.5
1.0244
17
Gravitational parameterm3/s22.203×10133.249×10143.986×10144.283×10131.267×10173.793×10165.794×10156.837×1015
Densityg/cm35.435.245.523.9401.330.701.301.76
Equatorial gravitym/s2
g
3.70
0.377
8.87
0.904
9.8
1.00
3.71
0.378
24.79
2.528
10.44
1.065
8.87
0.904
11.15
1.137
Escape velocitykm/s4.2510.3611.185.0259.5435.4921.2923.71
Rotation perioddays58.646225243.01870.997269681.025956750.413540.444010.718330.67125
Orbital perioddays
years
87.969
0.2408467
224.701
0.61519726
365.256363
1.0000174
686.971
1.8808476
4,332.59
11.862615
10,759.22
29.447498
30,688.5
84.016846
60,182
164.79132
Mean orbital speedkm/s47.872535.021429.785924.130913.06979.67246.83525.4778
Eccentricity0.205630690.006773230.016710220.093412330.048392660.054150600.047167710.00858587
Inclinationdeg.7.003.3901.851.312.480.761.77
Axial tiltdeg.0.0177.323.4425.193.1226.7397.8628.32
Mean surface temperatureK440–100730287227152 134 76 73
Mean air temperatureK2881651357673
Atmospheric compositionHeNa+
K+ 
CO2N2, SO2N2O2, Ar, CO2CO2, N2
Ar
H2, HeH2, HeH2, He
CH4
H2, He
CH4
Number of known moons0012951462816
Rings?NoNoNoNoYesYesYesYes
Planetary discriminant9.11.351.71.86.251.92.92.4

Dwarf planets

See main article: Dwarf planet.

See also: List of possible dwarf planets.

Dwarf planets are bodies orbiting the Sun that are massive and warm enough to have achieved hydrostatic equilibrium, but have not cleared their neighbourhoods of similar objects. Since 2008, there have been five dwarf planets recognized by the IAU, although only Pluto has actually been confirmed to be in hydrostatic equilibrium[25] (Ceres is close to equilibrium, though some anomalies remain unexplained).[26] Ceres orbits in the asteroid belt, between Mars and Jupiter. The others all orbit beyond Neptune.

bgcolor="#F2E0CE" style="text-align: left"
Asteroid belt
Kuiper belt
§ Scattered disc
× Sednoid
[27] [28] [29] [30] [31] [32] [33] [34] §[35]
Symbol or
Symbol (Unicode)♇ or ⯓
Minor planet number1134340136108136472136199
Discovery year18011930200420052005
Mean distance
from the Sun
km
AU
413,700,000
2.766
5,906,380,000
39.482
6,484,000,000
43.335
6,850,000,000
45.792
10,210,000,000
67.668
Mean radiuskm
:E
473
0.0742
1,188.3
0.186
816

0.13[36] [37]
715
0.11[38]
1,163
0.18[39]
Volumekm3
:E
4.21
0.00039
6.99
0.0065
1.98
0.0018
1.7
0.0016
6.59
0.0061
Surface areakm2
:E
2,770,000
0.0054
17,700,000
0.035
8,140,000
0.016
6,900,000
0.0135
17,000,000
0.0333
Masskg
:E
9.39
0.00016
1.30
0.0022
4.01 ± 0.04
0.0007[40]
≈ 3.1
0.0005
1.65
0.0028
Gravitational parameterm3/s26.263 × 10108.710 × 10112.674 × 10112.069 × 10111.108 × 1012
Densityg/cm32.161.872.022.032.43
Equatorial gravitym/s2
g
0.27
0.028
0.62
0.063
0.63
0.064
0.40
0.041
0.82
0.084
Escape velocitykm/s0.511.210.910.541.37
Rotation perioddays0.37816.38720.16310.951115.7859
Orbital periodyears4.599247.9283.8306.2559
Mean orbital speedkm/s17.8824.754.484.403.44
Eccentricity0.0800.2490.1950.1610.436
Inclinationdeg.10.5917.1428.2128.9844.04
Axial tiltdeg.4119.6≈ 126?≈ 78
Mean surface temperatureK167[41] 40[42] <50[43] 3030
Atmospheric compositionH2ON2, CH4, CO?N2, CH4[44] N2, CH4[45]
Number of known moons052[46] 1[47] 1[48]
Rings?NoNoYes??
Planetary discriminant0.330.0770.0230.020.10

Astronomers usually refer to solid bodies such as Ceres as dwarf planets, even if they are not strictly in hydrostatic equilibrium. They generally agree that several other trans-Neptunian objects (TNOs) may be large enough to be dwarf planets, given current uncertainties. However, there has been disagreement on the required size. Early speculations were based on the small moons of the giant planets, which attain roundness around a threshold of 200 km radius.[49] However, these moons are at higher temperatures than TNOs and are icier than TNOs are likely to be. Estimates from an IAU question-and-answer press release from 2006, giving 800 km radius and mass as cut-offs that normally would be enough for hydrostatic equilibrium, while stating that observation would be needed to determine the status of borderline cases.[50] Many TNOs in the 200–500 km radius range are dark and low-density bodies, which suggests that they retain internal porosity from their formation, and hence are not planetary bodies (as planetary bodies have sufficient gravitation to collapse out such porosity).

In 2023, Emery et al. wrote that near-infrared spectroscopy by the James Webb Space Telescope (JWST) in 2022 suggests that Sedna, Gonggong, and Quaoar underwent internal melting, differentiation, and chemical evolution, like the larger dwarf planets Pluto, Eris, Haumea, and Makemake, but unlike "all smaller KBOs". This is because light hydrocarbons are present on their surfaces (e.g. ethane, acetylene, and ethylene), which implies that methane is continuously being resupplied, and that methane would likely come from internal geochemistry. On the other hand, the surfaces of Sedna, Gonggong, and Quaoar have low abundances of CO and CO2, similar to Pluto, Eris, and Makemake, but in contrast to smaller bodies. This suggests that the threshold for dwarf planethood in the trans-Neptunian region is around 500 km radius.[51]

In 2024, Kiss et al. found that Quaoar has an ellipsoidal shape incompatible with hydrostatic equilibrium for its current spin. They hypothesised that Quaoar originally had a rapid rotation and was in hydrostatic equilibrium, but that its shape became "frozen in" and did not change as it spun down due to tidal forces from its moon Weywot.[52] If so, this would resemble the situation of Saturn's moon Iapetus, which is too oblate for its current spin.[53] [54] Iapetus is generally still considered a planetary-mass moon nonetheless, though not always.[55]

The table below gives Orcus, Quaoar, Gonggong, and Sedna as additional consensus dwarf planets; slightly smaller Salacia, which is larger than 400 km radius, has been included as a borderline case for comparison, (and is therefore italicized).

Orcus[56] Salacia[57] Quaoar[58] §Gonggong[59] ×Sedna[60]
Symbol
Symbol (Unicode)
Minor-planet number904821203475000022508890377
Discovery year20042004200220072003
Semi-major axiskm
AU
5,896,946,000
39.419
6,310,600,000
42.18
6,535,930,000
43.69
10,072,433,340
67.33
78,668,000,000
525.86
Mean radiuskm
:E
458.5[61]
0.0720
423[62]
0.0664
555[63]
0.0871
615
0.0982
497.5[64]
0.0780
Surface areakm2
:E
2,641,700
0.005179
2,248,500
0.004408
3,870,800
0.007589
4,932,300
0.009671
3,110,200
0.006098
Volumekm3
:E
403,744,500
0.000373
317,036,800
0.000396
716,089,900
0.000661
1,030,034,600
0.000951
515,784,000
0.000476
Masskg
:E
5.48<--mass of Orcus' system minus mass of Vanth-->[65]
0.0001
4.9
0.0001
1.20
0.0002
1.75
0.0003
?
Densityg/cm3?
Equatorial gravitym/s2
g

0.017

0.018

0.025

0.029
?
Escape velocitykm/s?
Rotation perioddays9.54??0.7367[66] 0.93330.4280[67]
Orbital periodyears247.49273.98287.97552.5212,059
Mean orbital speedkm/s4.684.574.523.631.04
Eccentricity0.2260.1060.0380.5060.855
Inclinationdeg.20.5923.927.9930.7411.93
Axial tiltdeg.??13.6[68] or 14.0[69] ??
Mean surface temperatureK≈&thinsp;42≈&thinsp;43≈&thinsp;41≈&thinsp;30≈&thinsp;12
Number of known moons1[70] 11[71] 10
Rings???Yes??
Planetary discriminant0.003<0.10.0015<0.1?
Absolute magnitude (H)2.34.12.711.81.5

As for objects in the asteroid belt, none are generally agreed as dwarf planets today among astronomers other than Ceres. The second- through fifth-largest asteroids have been discussed as candidates. Vesta (radius), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today.[72] Pallas (radius), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape. Vesta and Pallas are nonetheless sometimes considered small terrestrial planets anyway by sources preferring a geophysical definition, because they do share similarities to the rocky planets of the inner solar system.[73] The fourth-largest asteroid, Hygiea (radius), is icy. The question remains open if it is currently in hydrostatic equilibrium: while Hygiea is round today, it was probably previously catastrophically disrupted and today might be just a gravitational aggregate of the pieces.[74] The fifth-largest asteroid, Interamnia (radius), is icy and has a shape consistent with hydrostatic equilibrium for a slightly shorter rotation period than it now has.[75]

Satellites

See main article: Planetary-mass moon.

There are at least 19 natural satellites in the Solar System that are known to be massive enough to be close to hydrostatic equilibrium: seven of Saturn, five of Uranus, four of Jupiter, and one each of Earth, Neptune, and Pluto. Alan Stern calls these satellite planets, although the term major moon is more common. The smallest natural satellite that is gravitationally rounded is Saturn I Mimas (radius). This is smaller than the largest natural satellite that is known not to be gravitationally rounded, Neptune VIII Proteus (radius).

Several of these were once in equilibrium but are no longer: these include Earth's moon[76] and all of the moons listed for Saturn apart from Titan and Rhea.[54] The status of Callisto, Titan, and Rhea is uncertain, as is that of the moons of Uranus, Pluto[25] and Eris.[77] The other large moons (Io, Europa, Ganymede, and Triton) are generally believed to still be in equilibrium today. Other moons that were once in equilibrium but are no longer very round, such as Saturn IX Phoebe (radius), are not included. In addition to not being in equilibrium, Mimas and Tethys have very low densities and it has been suggested that they may have non-negligible internal porosity,[78] [79] in which case they would not be satellite planets.

The moons of the trans-Neptunian objects (other than Charon) have not been included, because they appear to follow the normal situation for TNOs rather than the moons of Saturn and Uranus, and become solid at a larger size (900–1000 km diameter, rather than 400 km as for the moons of Saturn and Uranus). Eris I Dysnomia and Orcus I Vanth, though larger than Mimas, are dark bodies in the size range that should allow for internal porosity, and in the case of Dysnomia a low density is known.

Satellites are listed first in order from the Sun, and second in order from their parent body. For the round moons, this mostly matches the Roman numeral designations, with the exceptions of Iapetus and the Uranian system. This is because the Roman numeral designations originally reflected distance from the parent planet and were updated for each new discovery until 1851, but by 1892, the numbering system for the then-known satellites had become "frozen" and from then on followed order of discovery. Thus Miranda (discovered 1948) is Uranus V despite being the innermost of Uranus' five round satellites. The missing Saturn VII is Hyperion, which is not large enough to be round (mean radius).

style="background-color: #B0E0E6;"
Satellite of Earth
Satellite of Jupiter
Satellite of Saturn
Satellite of Uranus
Satellite of Neptune
Satellite of Pluto
Moon[80] Io[81] Europa[82] Ganymede[83] Callisto[84] MimasEnceladusTethysDioneRhea
Roman numeral designationEarth IJupiter IJupiter IIJupiter IIIJupiter IVSaturn ISaturn IISaturn IIISaturn IVSaturn V
SymbolJIJIIJIIIJIVSISIISIIISIVSV
Symbol (Unicode)
Discovery yearPrehistoric161016101610161017891789168416841672
Mean distance
from primary
km384,399421,600670,9001,070,4001,882,700185,520237,948294,619377,396527,108
Mean radiuskm
:E
1,737.1
0.272
1,815
0.285
1,569
0.246
2,634.1
0.413
2,410.3
0.378
198.30
0.031
252.1
0.04
533
0.084
561.7
0.088
764.3
0.12
Surface area1 km237.9341.91030.987.0730.490.7993.573.9657.337
Volume1 km32225.315.976590.0330.0670.630.81.9
Mass1 kg7.34778.944.8014.81910.7580.003750.01080.061740.10950.2306
Densityg/cm33.34643.5283.011.9361.831.151.610.981.481.23
Equatorial gravitym/s2
g
1.622
0.1654
1.796
0.1831
1.314
0.1340
1.428
0.1456
1.235
0.1259
0.0636
0.00649
0.111
0.0113
0.145
0.0148
0.231
0.0236
0.264
0.0269
Escape velocitykm/s2.382.562.0252.7412.4400.1590.2390.3930.5100.635
Rotation perioddays27.321582
(sync)
1.7691378
(sync)
3.551181
(sync)
7.154553
(sync)
16.68902
(sync)
0.942422
(sync)
1.370218
(sync)
1.887802
(sync)
2.736915
(sync)
4.518212
(sync)
Orbital period about primarydays27.321581.7691383.5511817.15455316.689020.9424221.3702181.8878022.7369154.518212
Mean orbital speedkm/s1.02217.3413.74010.8808.20414.3212.6311.3510.038.48
Eccentricity0.05490.00410.0090.00130.00740.02020.00470.020.0020.001
Inclination to primary's equatordeg.18.29–28.580.040.471.850.21.510.021.510.0190.345
Axial tiltdeg.6.680.000405
± 0.00076
0.0965
± 0.0069
0.155
± 0.065[85]
≈&thinsp;0–2≈&thinsp;0≈&thinsp;0≈&thinsp;0≈&thinsp;0≈&thinsp;0
Mean surface temperatureK220130102110[86] 1346475648776
Atmospheric compositionArHe
NaKH
SO2[87] O2[88] O2[89] O2CO2[90] H2O, N2
CO2, CH4[91]
TitanIapetusMirandaArielUmbrielTitaniaOberonTriton[92] Charon
Roman numeral designationSaturn VISaturn VIII<--NOT A TYPO; Saturn VII (7) IS HYPERION, WHICH IS NOT ROUND-->Uranus V<--ALSO NOT A TYPO: Miranda was discovered well after the other four-->Uranus IUranus IIUranus IIIUranus IVNeptune IPluto I
SymbolSVISVIIIUVUIUIIUIIIUIVNIPI
Discovery year165516711948185118511787178718461978
Mean distance
from primary
km1,221,8703,560,820129,390190,900266,000436,300583,519354,75917,536
Mean radiuskm
:E
2,576
0.404
735.60
0.115
235.8
0.037
578.9
0.091
584.7
0.092
788.9
0.124
761.4
0.119
1,353.4
0.212
603.5
0.095
Surface area1 km283.06.70.704.2114.2967.827.28523.0184.580
Volume1 km371.61.670.0550.810.842.061.85100.92
Mass1 kg13.4520.180530.006590.1350.120.350.30142.140.152
Densityg/cm31.881.081.201.671.401.721.632.0611.65
Equatorial gravitym/s2
g
1.35
0.138
0.22
0.022
0.08
0.008
0.27
0.028
0.23
0.023
0.39
0.040
0.35
0.036
0.78
0.080
0.28
0.029
Escape velocitykm/s2.640.570.190.560.520.770.731.460.58
Rotation perioddays15.945
(sync)
79.322
(sync)
1.414
(sync)
2.52
(sync)
4.144
(sync)
8.706
(sync)
13.46
(sync)
5.877
(sync)
6.387
(sync)
Orbital period about primarydays15.94579.3221.41352.5204.1448.70613.465.8776.387
Mean orbital speedkm/s5.573.2656.6575.508984.667973.6443.1524.390.2
Eccentricity0.02880.02860.00130.00120.0050.00110.00140.000020.0022
Inclination to primary's equatordeg.0.3314.724.220.310.360.140.101570.001
Axial tiltdeg.≈&thinsp;0.3[93] ≈&thinsp;0≈&thinsp;0≈&thinsp;0≈&thinsp;0≈&thinsp;0≈&thinsp;0≈&thinsp;0.7[94] ≈&thinsp;0
Mean surface temperatureK93.7[95] 130595861606138[96] 53
Atmospheric compositionN2, CH4[97] N2, CH4[98]

See also

Notes

Other notes

Notes and References

  1. Michael Mark . Woolfson . Michael Woolfson . The Origin and Evolution of the Solar System . 10.1046/j.1468-4004.2000.00012.x . 2000 . Astronomy & Geophysics . 41 . 1 . 1.12–1.19 . 2000A&G....41a..12W . free.
  2. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Sun&Display=Facts&System=Metric NASA Solar System exploration Sun factsheet
  3. Web site: By the Numbers Sun - NASA Solar System Exploration. NASA. 16 June 2021. 23 May 2019. https://web.archive.org/web/20190523230455/https://solarsystem.nasa.gov/solar-system/sun/by-the-numbers/. live.
  4. Web site: Period of the Sun's Orbit around the Galaxy (Cosmic Year) . The Physics Factbook (self-published) . Stacy . Leong . Glenn . Elert . 2002 . 2008-06-26 . 7 January 2019 . https://web.archive.org/web/20190107010909/https://hypertextbook.com/facts/2002/StacyLeong.shtml . live .
  5. Book: Aschwanden, Markus J. . Encyclopedia of the Solar System . Lucy Ann . McFadden . Paul R. . Weissman . Torrence V. . Johnsson . The Sun . 80 . 2007 . Academic Press .
  6. 2006-08-24 . International Astronomical Union . news release IAU0603 . IAU 2006 General Assembly: Result of the IAU Resolution votes . 2007-12-31 . https://web.archive.org/web/20070103145836/http://www.iau.org/iau0603.414.0.html . 2007-01-03 . (Web site: original IAU news release link . 2008-10-06 . https://web.archive.org/web/20080205210247/http://www.iau.org/iau0603.414.0.html . 2008-02-05 .)
  7. Book: Sean. Solomon. Sean Solomon. Larry. Nittler. Brian. Anderson. 20 December 2018. Mercury: The View after MESSENGER. Cambridge Planetary Science Series. 21. Cambridge University Press. 72–73. 978-1-107-15445-2. 23 September 2022. 1 March 2024. https://web.archive.org/web/20240301162217/https://books.google.com/books?id=4o92DwAAQBAJ. live.
  8. Web site: NASA Mercury Fact Sheet . . 2008-11-17 . https://web.archive.org/web/20151106171436/http://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html . 2015-11-06.
  9. Web site: NASA Solar System Exploration Factsheet . https://web.archive.org/web/20040224173620/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mercury&Display=Facts . 2004-02-24 . . 2008-11-17.
  10. Web site: Planets and Pluto: Physical Characteristics. JPL, NASA. 15 June 2021. 6 May 2020. https://web.archive.org/web/20200506001657/https://ssd.jpl.nasa.gov/?planet_phys_par. live.
  11. Web site: NASA Venus Factsheet . . 2008-11-17 . https://web.archive.org/web/20160308174416/http://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html . 2016-03-08 . live.
  12. Web site: NASA Solar System Exploration Factsheet . . https://web.archive.org/web/20060929003116/http://sse.jpl.nasa.gov/planets/profile.cfm?Object=Venus&Display=Facts&System=Metric . 2006-09-29 . 2008-11-17.
  13. Web site: NASA Earth factsheet . . 2008-11-17 . 8 May 2013 . https://web.archive.org/web/20130508021904/http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html . live .
  14. Web site: NASA Solar System Exploration Factsheet . https://web.archive.org/web/20090827003435/http://sse.jpl.nasa.gov/planets/profile.cfm?Object=Earth&Display=Facts&System=Metric . 2009-08-27 . NASA . 2008-11-17.
  15. Web site: NASA Mars Factsheet . . https://web.archive.org/web/20100612092806/http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html . 2010-06-12 . 2008-11-17.
  16. Web site: NASA Mars Solar System Exploration Factsheet . https://web.archive.org/web/20040123051926/http://solarsystem.jpl.nasa.gov/planets/profile.cfm?Object=Mars&Display=Facts&System=Metric . 2004-01-23 . . 2008-11-17.
  17. Web site: NASA Jupiter factsheet . . 2008-11-17 . https://web.archive.org/web/20111013042045/http://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html . 2011-10-13 . live.
  18. Web site: NASA Solar System Exploration Factsheet . https://web.archive.org/web/20031215141351/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Jupiter&Display=Facts . 2003-12-15 . . 2008-11-17.
  19. Web site: NASA Saturn factsheet . . https://web.archive.org/web/20110818175309/http://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html . 2011-08-18 . live . 2008-11-17.
  20. Web site: NASA Solar System Exploration Saturn Factsheet . https://web.archive.org/web/20040224191458/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Saturn&Display=Facts . 2004-02-24 . . 2008-11-17.
  21. Web site: NASA Uranus Factsheet . . https://web.archive.org/web/20110804224710/http://nssdc.gsfc.nasa.gov/planetary/factsheet/uranusfact.html . 2011-08-04 . live . 2008-11-17.
  22. Web site: NASA Solar System Exploration Uranus Factsheet . https://web.archive.org/web/20031214200402/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Uranus&Display=Facts . 2003-12-14 . NASA . 2008-11-17.
  23. Web site: NASA Neptune Factsheet . . 2008-11-17 . 1 July 2010 . https://web.archive.org/web/20100701192119/http://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html . live .
  24. Web site: NASA Solar System Exploration Neptune Factsheet . https://web.archive.org/web/20031215224327/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Neptune&Display=Facts . 2003-12-15 . . 2008-11-17.
  25. Nimmo . Francis . etal . Mean radius and shape of Pluto and Charon from New Horizons images. Icarus . 2017 . 287 . 12–29 . 10.1016/j.icarus.2016.06.027. 2017Icar..287...12N . 1603.00821. 44935431.
  26. Book: https://meetingorganizer.copernicus.org/EPSC2018/EPSC2018-645-1.pdf. 4. Raymond, C.. Castillo-Rogez, J.C.. Park, R.S.. Ermakov, A.. Bland, M.T.. Marchi, S.. Prettyman, T.. Ammannito, E.. De Sanctis, M.C.. Russell, C.T.. September 2018. Dawn Data Reveal Ceres' Complex Crustal Evolution. European Planetary Science Congress. 12. 30 October 2021. 30 January 2020. https://web.archive.org/web/20200130111631/https://meetingorganizer.copernicus.org/EPSC2018/EPSC2018-645-1.pdf. live.
  27. Web site: NASA Asteroid Factsheet . 2008-11-17 . . https://web.archive.org/web/20100116142816/http://nssdc.gsfc.nasa.gov/planetary/factsheet/asteroidfact.html . 2010-01-16.
  28. Web site: NASA Pluto factsheet . . 2008-11-17 . 19 November 2015 . https://archive.today/20151119095810/http://nssdc.gsfc.nasa.gov/planetary/factsheet/plutofact.html . live .
  29. Web site: NASA Solar System Exploration Pluto Factsheet . https://web.archive.org/web/20040224190840/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Pluto&Display=Facts . 2004-02-24 . . 2008-11-17.
  30. Alexandra C. . Lockwood . Michael E. . Brown . Michael E. Brown . John A. . Stansberry . 2014 . The Size and Shape of the Oblong Dwarf Planet Haumea . Earth, Moon, and Planets . 1402.4456 . 10.1007/s11038-014-9430-1 . 111 . 3–4 . 127–137 . 2014EM&P..111..127L . 18646829 .
  31. David L. . Rabinowitz . David L. Rabinowitz . Kristina M. . Barkume . Michael E. . Brown . Henry G. . Roe . Michael . Schwartz . Suzanne W. . Tourtellotte . Chadwick A. . Trujillo . 2006 . Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a rapidly rotating, Pluto-sized object in the Kuiper Belt . The Astrophysical Journal . 639 . 2 . 1238–1251 . 10.1086/499575 . 2006ApJ...639.1238R . astro-ph/0509401. 11484750 .
  32. Web site: Jet Propulsion Laboratory Small-Body Database Browser: 136108 Haumea . . 2008-05-10 last obs. . 2008-11-13 . 27 December 2015 . https://web.archive.org/web/20151227152421/http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=136108 . live .
  33. Web site: Marc W. . Buie . Marc W. Buie . 2008-04-05 . Orbit fit and astrometric record for 136472 . SwRI . Space Science Department . 2008-07-13 . 27 May 2020 . https://web.archive.org/web/20200527191044/https://www.boulder.swri.edu/~buie/kbo/astrom/136472.html . live .
  34. Web site: NASA Small Bodies Database Browser: 136472 Makemake (2005 FY9) . NASA JPL . 2008-10-03 . 17 May 2020 . https://web.archive.org/web/20200517081526/https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=136472 . live . (unless otherwise cited)
  35. Web site: NASA Small Body Database Browser: Eris . NASA JPL . 2008-11-13 . 9 January 2019 . https://web.archive.org/web/20190109202709/https://ssd.jpl.nasa.gov/?horizons . live . (unless otherwise cited)
  36. Haumea's Shape, Composition, and Internal Structure . E. T. . Dunham . S. J. . Desch . L. . Probst . April 2019 . The Astrophysical Journal . 877 . 1 . 11 . 10.3847/1538-4357/ab13b3 . 2019ApJ...877...41D . 1904.00522. 90262114 . free .
  37. etal. Ortiz . J. L.. Santos-Sanz . P.. Sicardy . B.. Benedetti-Rossi . G.. Bérard . D.. Morales . N.. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature. 550. 7675. 2017. 219–223. 10.1038/nature24051. 29022593. 2006.03113 . 2017Natur.550..219O. 10045/70230. 205260767 . free.
  38. Michael E. . Brown . 1304.1041 . On the size, shape, and density of dwarf planet Makemake . The Astrophysical Journal . 767 . 1 . L7 . 2013 . 10.1088/2041-8205/767/1/L7 . 2013ApJ...767L...7B . 12937717 .
  39. John A. . Stansberry . Will M. . Grundy . Michael E. . Brown . Dale P. . Cruikshank . John . Spencer . David . Trilling . Jean-Luc . Margot . Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope . astro-ph/0702538 . The Solar System Beyond Neptune . 2007 . 2008ssbn.book..161S . 161 .
  40. Michael E. . Brown . Antonin H. . Bouchez . David L. . Rabinowitz . Re'em . Sari . Chadwick A. . Trujillo . Marcos A. . van Dam . 6 . Randall D. . Campbell . Jason C. Y. . Chin . Scott . Hartman . Erik M. . Johansson . Robert E. . Lafon . David . Le Mignant . Paul . Stomski . Doug . Summers . Peter L. . Wizinowich . October 2005 . Keck Observatory laser guide star adaptive optics discovery and characterization of a satellite to large Kuiper belt object 2003 EL61 . The Astrophysical Journal Letters . 632 . L45 . 10.1086/497641 . L45 . 2005ApJ...632L..45B . 119408563 . 3 September 2020 . 7 August 2020 . https://web.archive.org/web/20200807173612/https://authors.library.caltech.edu/34486/1/1538-4357_632_1_L45.pdf . live .
  41. Olivier . Saint-Pé . Michel . Combes . François J. . Rigaut . Ceres surface properties by high-resolution imaging from Earth . 1993 . 105 . 2 . 271–281 . Icarus . 10.1006/icar.1993.1125 . 1993Icar..105..271S .
  42. News: Astronomers: Pluto colder than expected . Than . Ker . Space.com . CNN . 2006 . 2006-03-05 . 19 October 2012 . https://web.archive.org/web/20121019062654/http://www.cnn.com/2006/TECH/space/01/03/pluto.temp/index.html . live .
  43. Chadwick A. . Trujillo . Chadwick A. Trujillo . Michael E. . Brown . Kristina M. . Barkume . Emily L. . Schaller . David L. . Rabinowitz . February 2007 . The Surface of 2003 EL61 in the Near Infrared . The Astrophysical Journal . 655 . 2 . 1172–1178 . 10.1086/509861 . 2007ApJ...655.1172T . astro-ph/0601618 . 118938812 .
  44. Methane and Ethane on the Bright Kuiper Belt Object 2005 FY9 . Michael E. . Brown . Kristina M. . Barkume . Geoffrey A. . Blake . Emily L. . Schaller . David L. . Rabinowitz . Henry G. . Roe . Chadwick A. . Trujillo . The Astronomical Journal . 2007 . 133 . 1 . 284–289 . 10.1086/509734 . 2007AJ....133..284B . 12146168 . 14 July 2019 . 7 February 2023 . https://web.archive.org/web/20230207122715/http://authors.library.caltech.edu/7288/1/BROaj07.pdf . live .
  45. Visible spectroscopy of : evidence for N2 ice on the surface of the largest TNO? . Javier . Licandro . Will M. . Grundy . Noemi . Pinilla-Alonso . Jerome P. . de Leon . Astronomy and Astrophysics . 2006 . 458 . 1 . L5–L8 . 10.1051/0004-6361:20066028 . 2006A&A...458L...5L . astro-ph/0608044 . 10.1.1.257.1298 . 31587702 . 19 January 2009 . 26 March 2009 . https://web.archive.org/web/20090326063101/http://www.aanda.org/index.php?option=article&access=standard&Itemid=129&url=%2Farticles%2Faa%2Fpdf%2F2006%2F40%2Faa6028-06.pdf . live .
  46. Darin . Ragozzine . Michael E. . Brown . Chadwick A. . Trujillo . Emily L. . Schaller . Orbits and Masses of the 2003 EL61 Satellite System . AAS DPS conference 2008 . 2008-10-17 . https://web.archive.org/web/20130718182107/http://www.abstractsonline.com/viewer/viewAbstract.asp?CKey=%7B421E1C09-F75A-4ED0-916C-8C0DDB81754D%7D&MKey=%7B35A8F7D5-A145-4C52-8514-0B0340308E94%7D&AKey=%7BAAF9AABA-B0FF-4235-8AEC-74F22FC76386%7D&SKey=%7B545CAD5F-068B-4FFC-A6E2-1F2A0C6ED978%7D . 2013-07-18.
  47. News: Chang . Kenneth . 26 April 2016 . Makemake, the Moonless Dwarf Planet, Has a Moon, After All . . 26 April 2016 . 17 August 2019 . https://web.archive.org/web/20190817085223/https://www.nytimes.com/2016/04/27/science/makemake-the-moonless-dwarf-planet-has-a-moon-after-all.html . live .
  48. Satellites of the largest Kuiper belt objects . Michael E. . Brown . Marcos A. . van Dam . Antonin H. . Bouchez . David . Le Mignant . Chadwick A. . Trujillo . Randall D. . Campbell . 6 . Jason C. Y. . Chin . Albert R. . Conrad . Scott . Hartman . Erik M. . Johansson . Robert E. . Lafon . David L. . Rabinowitz . Paul . Stomski . Doug . Summers . Peter L. . Wizinowich . The Astrophysical Journal . 2006 . 639 . 1 . L43–L46 . 10.1086/501524 . astro-ph/0510029 . 2006ApJ...639L..43B. 2578831 .
  49. Web site: The Dwarf Planets. Mike Brown. 2008-01-20. Michael E. Brown. 21 April 2020. https://web.archive.org/web/20200421065407/http://web.gps.caltech.edu/~mbrown/dwarfplanets/. live.
  50. Web site: 'Planet Definition' Questions & Answers Sheet . International Astronomical Union . August 24, 2006 . October 16, 2021 . 7 May 2021 . https://web.archive.org/web/20210507125920/https://www.iau.org/static/archives/releases/doc/iau0601_q_answers.doc . live .
  51. Emery. J. P. . I. . Wong . R. . Brunetto . J. C. . Cook . N. . Pinilla-Alonso . J. A. . Stansberry . B. J. . Holler . W. M. . Grundy . S. . Protopapa . A. C. . Souza-Feliciano . E. . Fernández-Valenzuela . J. I. . Lunine . D. C. . Hines . 2024. A Tale of 3 Dwarf Planets: Ices and Organics on Sedna, Gonggong, and Quaoar from JWST Spectroscopy. Icarus . 414 . 10.1016/j.icarus.2024.116017 . 2309.15230. 2024Icar..41416017E .
  52. etal . C. . Kiss . T. G. . Müller . G. . Marton . R. . Szakáts . A. . Pál . L. . Molnár . The visible and thermal light curve of the large Kuiper belt object (50000) Quaoar . Astronomy & Astrophysics . March 2024 . 684 . A50 . 10.1051/0004-6361/202348054 . 2401.12679 . 2024A&A...684A..50K.
  53. Cowen, R. (2007). Idiosyncratic Iapetus, Science News vol. 172, pp. 104–106. references
  54. 10.1016/j.icarus.2010.01.025. Thomas. P. C.. July 2010. Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus. 208. 1. 395–401. 2010Icar..208..395T. 2015-09-25. 2018-12-23. https://web.archive.org/web/20181223003125/http://www.ciclops.org/media/sp/2011/6794_16344_0.pdf. dead.
  55. Chen . Jingjing . Kipping . David . 2016 . Probabilistic Forecasting of the Masses and Radii of Other Worlds . The Astrophysical Journal . 834 . 1 . 17 . 10.3847/1538-4357/834/1/17. 1603.08614 . 119114880 . free .
  56. Web site: 2020-01-04 last obs . JPL Small-Body Database Browser: 90482 Orcus (2004 DW) . Jet Propulsion Laboratory . 2020-02-20 . 8 July 2019 . https://web.archive.org/web/20190708202911/https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2090482 . live .
  57. Web site: 2019-09-21 last obs . JPL Small-Body Database Browser: 120347 Salacia (2004 SB60) . Jet Propulsion Laboratory . 2020-02-20 . 3 April 2017 . https://web.archive.org/web/20170403194747/https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2120347 . live .
  58. Web site: 2019-08-31 last obs . NASA JPL Database Browser: 50000 Quaoar . Jet Propulsion Laboratory . 2020-02-20 . 2 October 2018 . https://web.archive.org/web/20181002121446/http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2050000 . live .
  59. Web site: NASA Small Bodies Database Browser: 225088 Gonggong (2007 OR10) . Jet Propulsion Laboratory . 2020-02-20 . 1 March 2017 . https://web.archive.org/web/20170301010854/http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2225088 . live .
  60. Web site: Marc W. . Buie . 2007-08-13 . Orbit Fit and Astrometric record for 90377 . . 2006-01-17 . 20 May 2011 . https://web.archive.org/web/20110520122821/http://www.boulder.swri.edu/~buie/kbo/astrom/90377.html . live .
  61. 2013 . TNOs are Cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of 9 bright targets at 70–500 µm . Astronomy & Astrophysics . 555 . A15 . 1305.0449 . 10.1051/0004-6361/201321329 . Fornasier . Sonia . Lellouch . Emmanuel . Müller . Thomas G. . Santos-Sanz . Pablo . Panuzzo . Pasquale . Kiss . Csaba . 6 . Lim . Tanya L. . Mommert . Michael . Bockelée-Morvan . Dominique . Esa . Vilenius . John A. . Stansberry . Gian-Paolo . Tozzi . Stefano . Mottola . Audrey . Delsanti . Jacques . Crovisier . René . Duffard . Florence . Henry . Pedro . Lacerda . Antonella M. . Barucci . Adeline . Gicquel . 2013A&A...555A..15F. 119261700 .
  62. Mutual Orbit Orientations of Transneptunian Binaries . W. M. . Grundy . K. S. . Noll . H. G. . Roe . M. W. . Buie . S. B. . Porter . A. H. . Parker . D. . Nesvorný . S. D. . Benecchi . D. C. . Stephens . C. A. . Trujillo . Icarus . 334 . 62–78 . 2019 . 10.1016/j.icarus.2019.03.035 . 2019Icar..334...62G . 133585837 . 0019-1035 . 2019-10-26 . https://web.archive.org/web/20200115091416/http://www2.lowell.edu/~grundy/abstracts/preprints/2019.TNB_orbits.pdf . 2020-01-15 .
  63. etal . F. . Braga-Ribas . B. . Sicardy . J. L. . Ortiz . E. . Lellouch . G. . Tancredi . J. . Lecacheux . August 2013 . The Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations . The Astrophysical Journal . 773 . 1 . 13 . 10.1088/0004-637X/773/1/26 . 2013ApJ...773...26B. 11336/1641 . 53724395 . free .
  64. Pál . A. . Kiss . C. . Müller . T.G. . Santos-Sanz . P. . Vilenius . E. . Szalai . N. . Mommert . M. . Lellouch . E. . Rengel . M. . Hartogh . P. . Protopapa . S. . Stansberry . J. . Ortiz . J.-L. . Duffard . R. . Thirouin . A. . Henry . F. . Delsanti . A. . "TNOs are Cool": A survey of the trans-Neptunian region. VII. Size and surface characteristics of (90377) Sedna and . 10.1051/0004-6361/201218874 . Astronomy & Astrophysics . 541 . L6 . 2012 . 2012A&A...541L...6P . 1204.0899. 119117186.
  65. 2307.04848 . Brown . Michael E. . Butler . Bryan J. . Masses and densities of dwarf planet satellites measured with ALMA . The Planetary Science Journal . 2023 . 4 . 10 . 193 . 10.3847/PSJ/ace52a . free . 2023PSJ.....4..193B .
  66. 1.
  67. Web site: 2016-01-12 last obs . JPL Small-Body Database Browser: 90377 Sedna (2003 VB12) . 28 May 2019 . 12 April 2019 . https://web.archive.org/web/20190412221701/http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2090377 . live .
  68. 1.
  69. 1.
  70. Web site: Distant EKO . The Kuiper Belt Electronic newsletter . March 2007 . 2008-11-17 . 12 September 2007 . https://web.archive.org/web/20070912203658/http://www.boulder.swri.edu/ekonews/issues/past/n051/html/index.html . live .
  71. Web site: IAUC 8812: Sats of 2003 AZ_84, (50000), (55637), (90482); V1281 Sco; V1280 Sco . International Astronomical Union . 2011-07-05 . 19 July 2011 . https://web.archive.org/web/20110719205520/http://cbat.eps.harvard.edu/iauc/08800/08812.html . live .
  72. Savage, Don . Jones, Tammy . Villard, Ray . 1995-04-19 . Asteroid or mini-planet? Hubble maps the ancient surface of Vesta . News Release STScI-1995-20 . . 2006-10-17 . 13 August 2012 . https://web.archive.org/web/20120813040524/http://hubblesite.org/newscenter/archive/releases/1995/20/image/c/ . live .
  73. Web site: Emily Lakdawalla . 21 April 2020 . What Is A Planet? . 2023-01-01 . The Planetary Society . en-US . https://web.archive.org/web/20220122142140/https://www.planetary.org/worlds/what-is-a-planet . 2022-01-22.
  74. A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea . etal . Vernazza . P. . Jorda . L. . Ševeček . P. . Brož . M. . Viikinkoski . M. . Hanuš . J. . Nature Astronomy . 273 . 2 . 136–141 . 10.1038/s41550-019-0915-8 . 10045/103308 . 2019-10-28 . 2020 . 2020NatAs...4..136V . 209938346 . free . 11 November 2020 . https://web.archive.org/web/20201111195300/https://www.eso.org/public/archives/releases/sciencepapers/eso1918/eso1918a.pdf . live .
  75. 1911.13049. 10.1051/0004-6361/201936639. (704) Interamnia: A transitional object between a dwarf planet and a typical irregular-shaped minor body. 2020. Hanuš. J.. Vernazza. P.. Viikinkoski. M.. Ferrais. M.. Rambaux. N.. Podlewska-Gaca. E.. Drouard. A.. Jorda. L.. Jehin. E.. Carry. B.. Marsset. M.. Marchis. F.. Warner. B.. Behrend. R.. Asenjo. V.. Berger. N.. Bronikowska. M.. Brothers. T.. Charbonnel. S.. Colazo. C.. Coliac. J.-F.. Duffard. R.. Jones. A.. Leroy. A.. Marciniak. A.. Melia. R.. Molina. D.. Nadolny. J.. Person. M.. Pejcha. O.. 208512707. Astronomy & Astrophysics. 633. A65. 2020A&A...633A..65H. 29.
  76. Interpretation of lunar potential fields . Stanley Keith . Runcorn . March 31, 1977 . Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences . 10.1098/rsta.1977.0094 . 1977RSPTA.285..507R . 285 . 1327 . 507–516 . 124703189 .
  77. W.M. Grundy, K.S. Noll, M.W. Buie, S.D. Benecchi, D. Ragozzine & H.G. Roe, 'The Mutual Orbit, Mass, and Density of Transneptunian Binary Gǃkúnǁʼhòmdímà ', Icarus (forthcoming, available online 30 March 2019) DOI: 10.1016/j.icarus.2018.12.037,
  78. Leliwa-Kopystyński . J. . Kossacki . K. J. . 2000 . Evolution of porosity in small icy bodies . Planetary and Space Science . 48 . 7–8 . 727–745 . 10.1016/S0032-0633(00)00038-6 . 2000P&SS...48..727L .
  79. Red Streaks on Tethys: Evidence for Recent Activity . Schenk . Paul . Buratti . Bonnie . Clark . Roger . Byrne . Paul . McKinnon . William . Matsuyama . Isamu . Nimmo . Francis . Scipioni . Francesca . 2022 . European Planetary Science Congress . Europlanet Science Congress 2022 . 10.5194/epsc2022-732 . free . 2022EPSC...16..732S . 20 November 2022 . 20 November 2022 . https://web.archive.org/web/20221120001336/https://meetingorganizer.copernicus.org/EPSC2022/EPSC2022-732.html . live .
  80. Web site: NASA. 2021. Williams. David R.. Moon Fact Sheet. 2023-01-01. 2 April 2019. https://web.archive.org/web/20190402143754/https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html. live.
  81. Web site: NASA Io Factsheet. https://web.archive.org/web/19990422163254/http://www.jpl.nasa.gov/galileo/io/fact.html#stats. 1999-04-22. NASA. 2008-11-16. (unless otherwise cited)
  82. Web site: NASA Europa Factsheet. https://web.archive.org/web/19970105180851/http://www.jpl.nasa.gov/galileo/europa/. 1997-01-05. NASA. 2008-11-16. (unless otherwise cited)
  83. Web site: NASA Ganymede Factsheet. https://web.archive.org/web/19970105182450/http://www.jpl.nasa.gov/galileo/ganymede/fact.html. 1997-01-05. NASA. 2008-11-16. (unless otherwise cited)
  84. Web site: NASA Callisto Factsheet. NASA. https://web.archive.org/web/19970105182324/http://www.jpl.nasa.gov/galileo/callisto/. 1997-01-05. 2008-11-16.
  85. Bruce G. . Bills . Free and forced obliquities of the Galilean satellites of Jupiter . 2005 . 175 . 1 . 233–247 . 10.1016/j.icarus.2004.10.028 . 2005Icar..175..233B . Icarus . 14 July 2019 . 27 July 2020 . https://web.archive.org/web/20200727063125/https://zenodo.org/record/1259023 . live .
  86. Glenn S. . Orton . John R. . Spencer . Larry D. . Travis . 3. Terry Z. . Martin . Leslie K. . Tamppari. Galileo Photopolarimeter-radiometer observations of Jupiter and the Galilean Satellites . Science . 1996 . 274 . 5286 . 389–391 . 1996Sci...274..389O . 10.1126/science.274.5286.389 . 128624870 .
  87. 1979 . Identification of gaseous SO2 and new upper limits for other gases on Io . Nature . 288 . 5725 . 755 . 10.1038/280755a0 . 1979Natur.280..755P. John C. . Pearl . Hanel . Rudolf A. . Kunde . Virgil G. . 3. Maguire . William C. . Fox . Kenneth . Gupta . Subhash . Ponnamperuma . Cyril . Raulin . François . 4338190 . free .
  88. Hall. D. T.. Strobel. D. F.. Feldman. P. D.. McGrath. M. A.. Weaver. H. A.. February 1995. Detection of an oxygen atmosphere on Jupiter's moon Europa. Nature. en. 373. 6516. 677–679. 10.1038/373677a0. 7854447. 1995Natur.373..677H. 4258306. 1476-4687. 1 January 2023. 1 January 2023. https://web.archive.org/web/20230101070328/https://www.nature.com/articles/373677a0. live.
  89. Doyle T. . Hall . Paul D. . Feldman . Melissa A. . McGrath . Darrell F. . Strobel . 1998 . The Far-Ultraviolet Oxygen Airglow of Europa and Ganymede . The Astrophysical Journal . 499 . 1 . 475–481 . 10.1086/305604 . 1998ApJ...499..475H . free. Retrieved 2008-11-17.
  90. 2005. Atmosphere of Callisto. Journal of Geophysical Research. 110. E02003. 10.1029/2004JE002322. E02003. 2005JGRE..110.2003L. Mao-Chang . Liang . Benjamin F. . Lane . Robert T. . Pappalardo . 3. Mark . Allen . Yuk L. . Yung. free. Retrieved 2008-11-17.
  91. Waite . J. Hunter Jr. . Combi . Michael R. . Ip Wing-huen . Ip . Wing-Huen . 3. Cravens . Thomas E. . McNutt . Ralph L. Jr. . Kasprzak . Wayne T. . Yelle . Roger V. . Luhmann . Janet . Niemann . Hasso B. . David . Gell . Brian . Magee . Greg . Fletcher . Jonathan I. . Lunine . Wei-Ling . Tseng. 3032849 . 2006 . Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure . Science . 311 . 5766 . 1419–1422 . 10.1126/science.1121290 . 16527970 . 2006Sci...311.1419W. Retrieved 2008-11-17.
  92. Web site: Williams. David R.. 2016. Neptunian Satellite Fact Sheet. 2023-01-01. NASA. 26 October 2000. https://web.archive.org/web/20001026193243/http://nssdc.gsfc.nasa.gov/planetary/factsheet/neptuniansatfact.html. live.
  93. Baland . R.-M. . Van Hoolst . T. . M. . Yseboodt . Ö. . Karatekin . 2011 . Titan's obliquity as evidence of a subsurface ocean? . Astronomy & Astrophysics . 530 . A141 . A141 . 10.1051/0004-6361/201116578. 1104.2741 . 2011A&A...530A.141B . 56245494 .
  94. Nimmo . F. . Spencer . J. R. . 2015 . Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology . Icarus . 246 . 2–10 . 10.1016/j.icarus.2014.01.044. 2015Icar..246....2N . 40342189 .
  95. Optical Properties of Titan Haze Laboratory Analogs Using Cavity Ring Down Spectroscopy . 1376 . 51 . Christa A. . Hasenkopf . Melinda R. . Beaver . Margaret A. . Tolbert. 3 . Owen B. . Toon . Christopher P. . McKay . 2007 . Workshop on Planetary Atmospheres . 2007-10-16 . https://web.archive.org/web/20140526074847/http://www.lpi.usra.edu/meetings/patm2007/pdf/9034.pdf . 2014-05-26. 2007plat.work...51H .
  96. Spectroscopic Determination of the Phase Composition and Temperature of Nitrogen Ice on Triton . Kimberly . Tryka . Robert H. . Brown . Vincent . Anicich . 3 . Dale P. . Cruikshank . Tobias C. . Owen . Science . 261 . 5122 . 751–754 . 1993Sci...261..751T . August 1993 . 10.1126/science.261.5122.751 . 17757214. 25093997 .
  97. The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe . Hasso B. . Niemann . Sushil K. . Atreya . Sven J. . Bauer . 3 . George R. . Carignan . Jaime E. . Demick . Ray L. . Frost . Daniel . Gautier . John A. . Haberman . Dan N. . Harpold . Donald M. . Hunten . Gianluca . Israel . Jonathan I. . Lunine . Wayne T. . Kasprzak . Tobias C. . Owen . Michael . Paulkovich . François . Raulin . Eric . Raaen . Stanley H. . Way . . 438 . 7069 . 779–784 . 2005 . 16319830 . 10.1038/nature04122 . 2005Natur.438..779N . 2027.42/62703 . 4344046 . free . 20 August 2019 . 14 April 2020 . https://web.archive.org/web/20200414035805/https://deepblue.lib.umich.edu/bitstream/handle/2027.42/62703/nature04122.pdf;jsessionid=31739AEF2B6261988585EC558A2F898B?sequence=1 . live .
  98. Ultraviolet Spectrometer Observations of Neptune and Triton . A. Lyle . Broadfoot. Sushil K. . Atreya. Jean-Loup . Bertaux. 3. Jacques E. . Blamont. Alexander J. . Dessler. Thomas M. . Donahue. William T. . Forrester. Doyle T. . Hall. Floyd . Herbert. Jay B. . Holberg. Deidre M. . Hunter. Vladimir A. . Krasnopolsky. Susan H. . Linick. Jonathan I. . Lunine. John C. . McConnell. H. Warren . Moos. Bill R. . Sandel. Nicholas M. . Schneider. Donald E. . Shemansky. Gerald R. . Smith. DarrellF. . Strobel. Roger V. . Yelle . 1989Sci...246.1459B . 1989-12-15 . Science . 246 . 1459–1466 . 10.1126/science.246.4936.1459 . 17756000 . 4936. 21809358 .