List of interface bit rates explained

This is a list of interface bit rates, is a measure of information transfer rates, or digital bandwidth capacity, at which digital interfaces in a computer or network can communicate over various kinds of buses and channels. The distinction can be arbitrary between a computer bus, often closer in space, and larger telecommunications networks. Many device interfaces or protocols (e.g., SATA, USB, SAS, PCIe) are used both inside many-device boxes, such as a PC, and one-device-boxes, such as a hard drive enclosure. Accordingly, this page lists both the internal ribbon and external communications cable standards together in one sortable table.

Factors limiting actual performance, criteria for real decisions

Most of the listed rates are theoretical maximum throughput measures; in practice, the actual effective throughput is almost inevitably lower in proportion to the load from other devices (network/bus contention), physical or temporal distances, and other overhead in data link layer protocols etc. The maximum goodput (for example, the file transfer rate) may be even lower due to higher layer protocol overhead and data packet retransmissions caused by line noise or interference such as crosstalk, or lost packets in congested intermediate network nodes. All protocols lose something, and the more robust ones that deal resiliently with very many failure situations tend to lose more maximum throughput to get higher total long term rates.

Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface, at best. For instance, SATA revision 3.0 (6 Gbit/s) controllers on one PCI Express 2.0 (5 Gbit/s) channel will be limited to the 5 Gbit/s rate and have to employ more channels to get around this problem. Early implementations of new protocols very often have this kind of problem. The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA revision 2.0 (3 Gbit/s), so moving from this 3 Gbit/s interface to USB 3.0 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.

Contention in a wireless or noisy spectrum, where the physical medium is entirely out of the control of those who specify the protocol, requires measures that also use up throughput. Wireless devices, BPL, and modems may produce a higher line rate or gross bit rate, due to error-correcting codes and other physical layer overhead. It is extremely common for throughput to be far less than half of theoretical maximum, though the more recent technologies (notably BPL) employ preemptive spectrum analysis to avoid this and so have much more potential to reach actual gigabit rates in practice than prior modems.

Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are made for contractual, risk management, aggregation saturation, or marketing reasons. Examples are rate limiting, bandwidth throttling, and the assignment of IP addresses to groups. These practices tend to minimize the throughput available to every user, but maximize the number of users that can be supported on one backbone.

Furthermore, chips are often not available in order to implement the fastest rates. AMD, for instance, does not support the 32-bit HyperTransport interface on any CPU it has shipped as of the end of 2009. Additionally, WiMAX service providers in the US typically support only up to 4 Mbit/s as of the end of 2009.

Choosing service providers or interfaces based on theoretical maxima is unwise, especially for commercial needs. A good example is large scale data centers, which should be more concerned with price per port to support the interface, wattage and heat considerations, and total cost of the solution. Because some protocols such as SCSI and Ethernet now operate many orders of magnitude faster than when originally deployed, scalability of the interface is one major factor, as it prevents costly shifts to technologies that are not backward compatible. Underscoring this is the fact that these shifts often happen involuntarily or by surprise, especially when a vendor abandons support for a proprietary system.

Conventions

By convention, bus and network data rates are denoted either in bits per second (bit/s) or bytes per second (B/s). In general, parallel interfaces are quoted in B/s and serial in bit/s. The more commonly used is shown below in bold type.

On devices like modems, bytes may be more than 8 bits long because they may be individually padded out with additional start and stop bits; the figures below will reflect this. Where channels use line codes (such as Ethernet, Serial ATA, and PCI Express), quoted rates are for the decoded signal.

The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate.

The use of decimal prefixes is standard in data communications.

Bandwidths

The figures below are grouped by network or bus type, then sorted within each group from lowest to highest bandwidth; gray shading indicates a lack of known implementations.

As stated above, all quoted bandwidths are for each direction. Therefore, for duplex interfaces (capable of simultaneous transmission both ways), the stated values are simplex (one way) speeds, rather than total upstream+downstream.

Radio clock

Time signal station to radio clock

Teletypewriter (TTY) or telecommunications device for the deaf (TDD)

Technology Max. rate Year
TTY (V.18) 6 characters/s[3] 1994[4]
TTY (V.18) 6.6 characters/s 1994
NTSC Line 21 Closed Captioning ~100 characters/s 1976[5]

Modems (narrowband and broadband)

Narrowband (POTS: 4 kHz channel)

Technology Rate Rate overhead Year
align=left Morse code (skilled operator) (cps) 1844
align=left Normal human speech[6] prehistoric
align=left Teleprinter (50 baud)404 operations per minute1940x
align=left Modem 110 baud (Bell 101) (~10 cps)align=left 1959
align=left Modem 300 (300 baud; Bell 103 or V.21) (~30 cps)align=left 1962
align=left Modem 1200/75 (600 baud; V.23) (~120 cps)align=left 1964(?)
align=left Modem 1200 (600 baud; Vadic VA3400, Bell 212A, or V.22) (~120 cps)align=left 1976
align=left Modem 1200 (Bell 202C, 202D) (~150 cps)align=left ?
align=left Modem 2000 (Bell 201A) (~250 cps)align=left ?
align=left Modem 2400 (Bell 201B) (~300 cps)align=left ?
align=left Modem 2400 (600 baud; V.22bis)align=left 1984
align=left Modem 4800/75 (1600 baud; V.27ter)align=left 1976
align=left Modem 4800 (1600 baud, Bell 208A, 208B)align=left
align=left Modem 9600 (2400 baud; V.32)align=left 1984
align=left Modem 14.4 (2400 baud; V.32bis)align=left 1991
align=left Modem 28.8 (3200 baud; V.34-1994)align=left 1994
align=left Modem 33.6 (3429 baud; V.34-1996/98)align=left 1996[7]
align=left Modem 56k (8000/3429 baud; V.90)align=left 1998
align=left Modem 56k (8000/8000 baud; V.92)align=left 2001
align=left Modem data compression (variable; V.92/V.44)align=left 2000
align=left ISP-side text/image compression (variable)align=left 1998
align=left ISDN Basic Rate Interface (single/dual channel)align=left 1986
align=left IDSL (dual ISDN + 16 kbit/s data channels)align=left 2000[8]

Broadband (hundreds of kHz to GHz wide)

Technology Rate Rate overhead Year
ADSL (G.lite)1998
HDSL ITU a.k.a. DS11998[9]
MSDSL?
SDSL?
SHDSL ITU 2001
ADSL (G.dmt) ITU 1999
ADSL2 ITU 2002
ADSL2+ ITU 2003
DOCSIS 1.0[10] (cable modem)1997
DOCSIS 2.0[11] (cable modem)2002
VDSL ITU 2001
VDSL2 ITU 2006
Uni-DSL2006
VDSL2 ITU Amendment 1 (11/15)2015
BPON (G.983) (fiber optic service)2005[12]
G.fast ITU 2014
EPON (802.3ah) (fiber optic service)2008
DOCSIS 3.0[13] (cable modem)2006
GPON (G.984) (fiber optic service)2008[14]
DOCSIS 3.1[15] (cable modem)2013
10G-PON (G.987) (fiber optic service)2012[16]
DOCSIS 4.0 (cable modem)2017
XGS-PON (G.9807.1) (fiber optic service)2016
NG-PON2 (G.989) (fiber optic service)2015[17]

Mobile telephone interfaces

TechnologyDownload rateUpload rateYear
GSM CSD (2G)align=right align=right align=right align=right align=right
HSCSDalign=right align=right align=right align=right align=right
GPRS (2.5G)align=right align=right align=right align=right align=right
WiDENalign=right align=right align=right align=right align=right
CDMA2000 1×RTTalign=right align=right align=right align=right align=right
EDGE (2.75G) (type 1 MS)align=right align=right align=right align=right align=right 2002
UMTS 3Galign=right align=right align=right align=right align=right
EDGE (type 2 MS)align=right align=right align=right align=right align=right
EDGE Evolution (type 1 MS)align=right align=right align=right align=right align=right
EDGE Evolution (type 2 MS)align=right align=right align=right align=right align=right
1×EV-DO rev. 0align=right align=right align=right align=right align=right
1×EV-DO rev. Aalign=right align=right align=right align=right align=right
LTE Cat 1align=right align=right align=right align=right align=right
1×EV-DO rev. Balign=right align=right align=right align=right align=right
HSPA (3.5G)align=right align=right align=right align=right align=right
4×EV-DO Enhancements (2×2 MIMO)align=right align=right align=right align=right align=right
HSPA+ (2×2 MIMO)align=right align=right align=right align=right align=right
LTE Cat 2align=right align=right align=right align=right align=right
15×EV-DO rev. Balign=right align=right align=right align=right align=right
LTE Cat 3align=right align=right align=right align=right align=right
UMB (2×2 MIMO)align=right align=right align=right align=right align=right
LTE Cat 4align=right align=right align=right align=right align=right
LTE (2×2 MIMO)align=right align=right align=right align=right align=right 2004
UMB (4×4 MIMO)align=right align=right align=right align=right align=right
EV-DO rev. Calign=right align=right align=right align=right align=right
LTE Cat 5align=right align=right align=right align=right align=right
LTE Cat 6align=right align=right align=right align=right align=right
LTE Cat 7align=right align=right align=right align=right align=right
LTE (4×4 MIMO)align=right align=right align=right align=right align=right
LTE Cat 13align=right align=right align=right align=right align=right
LTE Cat 9align=right align=right align=right align=right align=right
LTE Cat 10align=right align=right align=right align=right align=right
LTE Cat 11align=right align=right align=right align=right align=right
LTE Cat 12align=right align=right align=right align=right align=right
LTE Cat 16align=right align=right align=right align=right align=right
LTE Cat 18align=right align=right align=right align=right align=right
LTE Cat 21align=right align=right align=right align=right align=right
LTE Cat 20align=right align=right align=right align=right align=right
LTE Cat 8align=right align=right align=right align=right align=right
LTE Cat 14align=right align=right align=right align=right align=right
5G NRalign=right ?align=right ?align=right ?align=right ?align=right ?

Wide area networks

Technology Rate Year
align=right align=right 1990
align=right align=right
align=right align=right
DS1 / T1 (and ISDN Primary Rate Interface) align=right align=right 1990
E1 (and ISDN Primary Rate Interface) align=right align=right
align=right align=right
LR-VDSL2 (4 to 5 km [long-]range) (symmetry optional) align=right align=right
align=right align=right
align=right align=right
align=right align=right
align=right align=right
align=right align=right
align=right align=right
align=right align=right
DOCSIS 1.0 (cable modem) align=right align=right 1997
DOCSIS 2.0 (cable modem) align=right align=right 2002
DS3 / T3 ('45 Meg') align=right align=right
align=right align=right
VDSL (symmetry optional) align=right align=right
align=right align=right
VDSL2 (symmetry optional) align=right align=right
align=right align=right
align=right align=right
OC-9 align=right align=right
align=right align=right
OC-18 align=right align=right
DOCSIS 3.0 (cable modem) align=right align=right 2006
align=right align=right
OC-36 align=right align=right
align=right align=right
align=right align=right
align=right align=right
10 Gigabit Ethernet WAN PHY align=right align=right
DOCSIS 3.1 (cable modem) align=right align=right 2013
DOCSIS 4.0 (cable modem) align=right align=right 2017
align=right align=right
OC-768 / STM-256 align=right align=right
OC-1536 / STM-512 align=right align=right
OC-3072 / STM-1024 align=right align=right

Local area networks

Technology Rate Year
align=right align=right 1988
align=right align=right 1981
align=right align=right 1980
align=right align=right 1985
ARCNET (Standard) align=right align=right 1977
Chaosnet (Original) align=right align=right 1971
Token Ring (Original) align=right align=right 1985
Ethernet (10BASE-X) align=right align=right 1980 (1985 IEEE Standard)
Token Ring (Later) align=right align=right 1989
align=right align=right 1992
align=right align=right 1993?
align=right align=right 1995
Token Ring IEEE 802.5t align=right align=right
Fast Ethernet (100BASE-X) align=right align=right 1995
align=right align=right
MoCA 1.0[18] align=right align=right
MoCA 1.1 align=right align=right
align=right align=right 2005
FireWire (IEEE 1394) 400 align=right align=right 1995
MoCa 2.0 align=right 2016
align=right align=right
align=right align=right 2010
Token Ring IEEE 802.5v align=right align=right 2001
Gigabit Ethernet (1000BASE-X) align=right align=right 1998
Stanford DASH/NUMAlink 1 align=right align=right ~1990
align=right align=right
InfiniBand SDR 1× align=right align=right 2001, 2003
Reflective memory or RFM2 (1.25 μs latency) align=right align=right 2017
RapidIO Gen1 1× align=right align=right 2000
2.5 Gigabit Ethernet (2.5GBASE-T) align=right align=right 2016
align=right align=right
InfiniBand DDR 1× align=right align=right 2005
RapidIO Gen2 1× align=right align=right 2008
5 Gigabit Ethernet (5GBASE-T) align=right align=right 2016
InfiniBand QDR 1× align=right align=right 2007
InfiniBand SDR 4× align=right align=right 2001, 2003
align=right align=right
RapidIO Gen1 4x align=right align=right
RapidIO Gen2 2x align=right align=right 2008
10 Gigabit Ethernet (10GBASE-X) align=right align=right 2002-2006
align=right align=right
InfiniBand FDR-10 1× align=right align=right 2011
NUMAlink 2 align=right align=right 1996
InfiniBand FDR 1× align=right align=right 2011
InfiniBand SDR 8× align=right align=right 2001, 2003
InfiniBand DDR 4× align=right align=right 2005
RapidIO Gen2 4x align=right align=right 2008
Scalable Coherent Interface (SCI) Dual Channel SCI, x8 PCIe align=right align=right
InfiniBand SDR 12× align=right align=right
RapidIO Gen4 1× align=right align=right 2016
InfiniBand EDR 1×[19] align=right align=right 2014
25 Gigabit Ethernet (25GBASE-X) align=right align=right 2016
NUMAlink 3 align=right align=right 2000
InfiniBand DDR 8× align=right align=right 2005
InfiniBand QDR 4× align=right align=right 2007
RapidIO Gen2 8x align=right align=right 2008
40 Gigabit Ethernet (40GBASE-X) 4× align=right align=right 2010
InfiniBand FDR-10 4× align=right align=right 2011
InfiniBand DDR 12× align=right align=right 2005
50 Gigabit Ethernet (50GBASE-X) align=right align=right 2016
InfiniBand HDR 1×[20] align=right align=right 2017
NUMAlink 4 align=right align=right 2004
NUMAlink 6 align=right align=right 2012
InfiniBand FDR 4× align=right align=right 2011
InfiniBand QDR 8× align=right align=right 2007
RapidIO Gen2 16× align=right align=right 2008
InfiniBand FDR-10 8× align=right align=right 2011
InfiniBand QDR 12× align=right align=right 2007
InfiniBand EDR 4× align=right align=right 2014
100 Gigabit Ethernet (100GBASE-X) 10×/4× align=right align=right 2010/2018
align=right align=right 2015
InfiniBand NDR 1× align=right align=right 2022
NUMAlink 8 (Flex ASIC) align=right align=right 2017
InfiniBand FDR 8× align=right align=right 2011
NUMAlink 7 align=right align=right 2014
NUMAlink 5 align=right align=right 2009
InfiniBand FDR-10 12× align=right align=right 2011
InfiniBand FDR 12× align=right align=right 2011
InfiniBand EDR 8× align=right align=right 2014
InfiniBand HDR 4× align=right align=right 2017
200 Gigabit Ethernet (200GBASE-X) align=right align=right 2017
InfiniBand XDR 1× align=right align=right 2024
InfiniBand EDR 12× align=right align=right 2014
400 Gigabit Ethernet (400GBASE-X) align=right align=right 2017
InfiniBand HDR 8× align=right align=right 2017
InfiniBand NDR 4× align=right align=right 2022
InfiniBand GDR 1× align=right align=right TBA
InfiniBand HDR 12× align=right align=right 2017
InfiniBand NDR 8× align=right align=right 2022
InfiniBand XDR 4× align=right align=right 2024
800 Gigabit Ethernet (800GBASE-X) align=right align=right 2024
InfiniBand NDR 12× align=right align=right 2022
InfiniBand XDR 8× align=right align=right 2024
InfiniBand GDR 4× align=right align=right TBA
InfiniBand XDR 12× align=right align=right 2024
InfiniBand GDR 8× align=right align=right TBA
InfiniBand GDR 12× align=right align=right TBA

Wireless networks

802.11 networks in infrastructure mode are half-duplex; all stations share the medium. In infrastructure or access point mode, all traffic has to pass through an Access Point (AP). Thus, two stations on the same access point that are communicating with each other must have each and every frame transmitted twice: from the sender to the access point, then from the access point to the receiver. This approximately halves the effective bandwidth.

802.11 networks in ad hoc mode are still half-duplex, but devices communicate directly rather than through an access point. In this mode all devices must be able to see each other, instead of only having to be able to see the access point.

Standard Maximum Link Rate Year
align=right align=right 1988
align=right align=right 1997
RONJA (full duplex) align=right align=right 2001
align=right align=right 1999
align=right align=right 1999
align=right align=right 2003
IEEE 802.16 (WiMAX) align=right align=right 2004
IEEE 802.11g with
Super G
by Atheros
align=right align=right 2003
IEEE 802.11g with 125 High
Speed Mode
by Broadcom
align=right align=right 2003
IEEE 802.11g with Nitro by Conexant align=right align=right 2003
IEEE 802.11n (aka Wi-Fi 4) align=right align=right 2009
IEEE 802.11ac (aka Wi-Fi 5) align=right align=right 2012
align=right align=right 2011
IEEE 802.11ax (aka Wi-Fi 6/6E) align=right align=right 2019
IEEE 802.11be (aka Wi-Fi 7 or
Extremely High Throughput (EHT))
align=right
expected
align=right
expected
Late 2024
expected
IEEE 802.11bn (aka Wi-Fi 8 or
Ultra High Reliability (UHR))
align=right
expected
align=right
expected
2028
expected
IEEE 802.11ay (aka Enhanced
Throughput for Operation in License
-exempt Bands above 45 GHz)
align=right
expected
align=right
expected
March 2021
standardized

Wireless personal area networks

Technology Rate Year
align=right align=right
IrDA-Control align=right align=right
IrDA-SIR align=right align=right
802.15.4 (2.4 GHz) align=right align=right
align=right align=right 2002
align=right align=right 2004
IrDA-FIR align=right align=right
IrDA-VFIR align=right align=right
align=right align=right 2009
align=right align=right 2010
align=right align=right 2016
IrDA-UFIR align=right align=right
align=right align=right
IrDA-Giga-IR align=right align=right

Computer buses

Main buses

Technology Rate Year
align=right align=right 1992 (standardized)
Apple II series (incl. Apple IIGS) 8-bit/1 MHz align=right align=right [21] [22] 1977
SS-50 Bus 8-bit/1(?) MHz align=right align=right 1975
STD-80 8-bit/8 MHz align=right align=right
ISA 8-Bit/4.77 MHz align=right 0 W/S: every 4 clocks 8 bits
1 W/S: every 5 clocks 8 bits
align=right 0 W/S: every 4 clocks 1 byte
1 W/S: every 5 clocks 1 byte
1981 (created)
STD-80 16-bit/8 MHz align=right align=right
I3C (HDR mode)[23] align=right 2017
Zorro II 16-bit/7.14 MHz[24] align=right align=right 1986
ISA 16-Bit/8.33 MHz align=right align=right 1984 (created)
Europe Card Bus 8-Bit/10 MHz align=right align=right 1977 (created)
S-100 bus 8-bit/10 MHz align=right align=right 1976 (published)
Serial Peripheral Interface (Up to 100 MHz) align=right align=right 1989
align=right align=right 2002
STEbus 8-Bit/16 MHz align=right align=right 1987 (standardized)
C-Bus 16-bit/10 MHz align=right align=right [25] 1982
align=right align=right
STD-32 32-bit/8 MHz align=right align=right [26]
NESA 32-bit/8 MHz align=right align=right [27]
EISA 32-bit/8.33 MHz align=right align=right 1988
VME64 32-64bit align=right align=right 1981
MCA 32bit/10 MHz align=right align=right 1987
NuBus 10 MHz align=right align=right 1987 (standardized)
DEC TURBOchannel 32-bit/12.5 MHz align=right align=right
NuBus90 20 MHz align=right align=right 1991
MCA 32bit/20 MHz align=right align=right [28] 1992
APbus 32-bit/25(?) MHz align=right align=right [29]
Sbus 32-bit/25 MHz align=right align=right 1989
DEC TURBOchannel 32-bit/25 MHz align=right align=right
Local Bus 98 32-bit/33 MHz align=right align=right [30]
VESA Local Bus (VLB) 32-bit/33 MHz align=right align=right 1992
PCI 32-bit/33 MHz align=right align=right 1993
align=right align=right
Zorro III 32-bit/async (eq. 37.5 MHz)[31] [32] align=right align=right [33] 1990
VESA Local Bus (VLB) 32-bit/40 MHz align=right align=right 1992
Sbus 64-bit/25 MHz align=right align=right 1995
align=right align=right
PCI 64-bit/33 MHz align=right align=right 1993
PCI 32-bit/66 MHz align=right align=right 1995
AGPalign=right align=right 1997
PCI Express 1.0 (×1 link) align=right align=right 2004
RapidIO Gen1 1× align=right align=right
HIO bus align=right align=right
GIO64 64-bit/40 MHz align=right align=right
PCI Express 2.0 (×1 link) align=right align=right 2007
AGP 2× align=right align=right 1997
PCI 64-bit/66 MHz align=right align=right
PCI-X DDR 16-bit align=right align=right
RapidIO Gen2 1× align=right align=right
PCI 64-bit/100 MHz align=right align=right
PCI Express 3.0 (×1 link) align=right align=right 2011
Unified Media Interface (UMI) (×4 link) align=right align=right 2011
Direct Media Interface (DMI) (×4 link) align=right align=right 2004
Enterprise Southbridge Interface (ESI) align=right align=right
PCI Express 1.0 (×4 link) align=right align=right 2004
AGP 4× align=right align=right 1998
PCI-X 133 align=right align=right
PCI-X QDR 16-bit align=right align=right
InfiniBand single 4×[34] align=right align=right
RapidIO Gen1 4× align=right align=right
RapidIO Gen2 2× align=right align=right
align=right align=right
Unified Media Interface 2.0 (UMI 2.0; ×4 link) align=right align=right 2012
Direct Media Interface 2.0 (DMI 2.0; ×4 link) align=right align=right 2011
PCI Express 1.0 (×8 link) align=right align=right 2004
PCI Express 2.0 (×4 link) align=right align=right 2007
AGP 8× align=right align=right 2002
PCI-X DDR align=right align=right
RapidIO Gen2 4× align=right align=right
Sun JBus (200 MHz) align=right align=right 2003
HyperTransport (800 MHz, 16-pair) align=right align=right 2001
PCI Express 3.0 (×4 link) align=right align=right 2011
HyperTransport (1 GHz, 16-pair) align=right align=right
PCI Express 1.0 (×16 link) align=right align=right 2004
PCI Express 2.0 (×8 link) align=right align=right 2007
PCI-X QDR align=right align=right
AGP 8× 64-bit align=right align=right
RapidIO Gen2 8x align=right align=right
Direct Media Interface 3.0 (DMI 3.0; ×4 link) align=right align=right 2015
CXL Specification 3.0 & 3.1 (×1 link) align=right 2022, 2023
PCI Express 3.0 (×8 link) align=right align=right 2011
PCI Express 2.0 (×16 link) align=right align=right 2007
RapidIO Gen2 16x align=right align=right
PCI Express 5.0 (×4 link) align=right 2019
PCI Express 3.0 (×16 link) align=right align=right 2011
CAPI 2014
QPI (4.80GT/s, 2.40 GHz) align=right align=right
HyperTransport 2.0 (1.4 GHz, 32-pair) align=right align=right 2004
QPI (5.86GT/s, 2.93 GHz) align=right align=right
QPI (6.40GT/s, 3.20 GHz) align=right align=right
QPI (7.2GT/s, 3.6 GHz) align=right align=right 2012
PCI Express 6.0 (×4 link) align=right 2022
PCI Express 4.0 (×16 link)[35] align=right align=right 2018
align=right align=right 2016
QPI (8.0GT/s, 4.0 GHz) align=right align=right 2012
QPI (9.6GT/s, 4.8 GHz) align=right align=right 2014
HyperTransport 3.0 (2.6 GHz, 32-pair) align=right align=right 2006
HyperTransport 3.1 (3.2 GHz, 32-pair) align=right align=right 2008
CXL Specification 1.x & 2.0 (×16 link) align=right 2019, 2020
PCI Express 5.0 (×16 link) [36] align=right 2019
NVLink 1.0 align=right align=right 2016
PCI Express 6.0 (×16 link) [37] align=right 2022
CXL Specification 3.0 & 3.1 (×16 link) align=right 2022, 2023
NVLink 2.0 align=right align=right 2017
PCI Express 7.0 (×16 link) align=right 2025
Infinity Fabric (Max. theoretical) align=right align=right 2017

LPC protocol includes high overhead. While the gross data rate equals 33.3 million 4-bit-transfers per second (or), the fastest transfer, firmware read, results in . The next fastest bus cycle, 32-bit ISA-style DMA write, yields only . Other transfers may be as low as .[38]

Uses 128b/130b encoding, meaning that about 1.54% of each transfer is used for error detection instead of carrying data between the hardware components at each end of the interface. For example, a single link PCIe 3.0 interface has an 8 Gbit/s transfer rate, yet its usable bandwidth is only about 7.88 Gbit/s.

Uses 8b/10b encoding, meaning that 20% of each transfer is used by the interface instead of carrying data from between the hardware components at each end of the interface. For example, a single link PCIe 1.0 has a 2.5 Gbit/s transfer rate, yet its usable bandwidth is only 2 Gbit/s (250 ).

Uses PAM-4 encoding and a 256 bytes FLIT block, of which 14 bytes are FEC and CRC, meaning that 5.47% of total data rate is used for error detection and correction instead of carrying data. For example, a single link PCIe 6.0 interface has an 64 Gbit/s total transfer rate, yet its usable bandwidth is only 60.5 Gbit/s.

Portable

Technology Rate Year
PC Card 16-bit 255 ns byte mode align=right align=right 1990
PC Card 16-bit 255 ns word mode align=right align=right
PC Card 16-bit 100 ns byte mode align=right align=right
PC Card 16-bit 100 ns word mode align=right align=right
PC Card 32-bit (CardBus) byte mode align=right align=right
ExpressCard 1.2 USB 2.0 mode align=right align=right 2003
PC Card 32-bit (CardBus) word mode align=right align=right
PC Card 32-bit (CardBus) doubleword mode align=right align=right
ExpressCard 1.2 PCI Express mode align=right align=right 2008
ExpressCard 2.0 USB 3.0 mode align=right align=right
ExpressCard 2.0 PCI Express mode align=right align=right 2009

Storage

Technology Rate Year
Teletype Model 33 paper tape align=right align=right 1963
TRS-80 Model 1 Level 1 BASIC cassette tape interface align=right align=right 1977
C2N Commodore Datasette 1530 cassette tape interface align=right align=right 1977
Apple II cassette tape interface align=right align=right 1977
Amstrad CPC tape align=right align=right 1984
Single Density 8-inch FM Floppy Disk Controller (160 KB) align=right align=right 1973
Single Density 5.25-inch FM Floppy Disk Controller (180 KB) align=right align=right 1978
High Density MFM Floppy Disk Controller (1.2 MB/1.44 MB) align=right align=right 1984
CD Controller (1×) align=right align=right 1988
MFM hard disk align=right align=right 1980
RLL hard disk align=right align=right
DVD Controller (1×) align=right align=right
align=right align=right
ATA PIO Mode 0 align=right align=right 1986
HD DVD Controller (1×) align=right align=right
Blu-ray Controller (1×) align=right align=right
SCSI (Narrow SCSI) (5 MHz) align=right align=right 1986
ATA PIO Mode 1 align=right align=right 1994
ATA PIO Mode 2 align=right align=right 1994
Fast SCSI (8 bits/10 MHz) align=right align=right
ATA PIO Mode 3 align=right align=right 1996
AoE over Fast Ethernet align=right align=right 2009
iSCSI over Fast Ethernet align=right align=right 2004
ATA PIO Mode 4 align=right align=right 1996
Fast Wide SCSI (16 bits/10 MHz) align=right align=right
Ultra SCSI (Fast-20 SCSI) (8 bits/20 MHz) align=right align=right
SD (High Speed) align=right
Ultra DMA ATA 33 align=right align=right 1998
Ultra Wide SCSI (16 bits/20 MHz) align=right align=right
Ultra-2 SCSI 40 (Fast-40 SCSI) (8 bits/40 MHz) align=right align=right
SDHC/SDXC/SDUC (UHS-I Full Duplex) align=right
Ultra DMA ATA 66 align=right align=right 2000
Blu-ray Controller (16×) align=right align=right
Ultra-2 wide SCSI (16 bits/40 MHz)align=right align=right
align=right align=right 1990
Ultra DMA ATA 100 align=right align=right 2002
Fibre Channel 1GFC (1.0625 GHz) align=right align=right 1997
AoE over gigabit Ethernet, jumbo frames align=right align=right 2009
iSCSI over gigabit Ethernet, jumbo frames align=right align=right 2004
Ultra DMA ATA 133 align=right align=right 2005
SDHC/SDXC/SDUC (UHS-II Full Duplex) align=right
Ultra-3 SCSI (Ultra 160 SCSI; Fast-80 Wide SCSI) (16 bits/40 MHz DDR) align=right align=right
align=right align=right 2003
Fibre Channel 2GFC (2.125 GHz) align=right align=right 2001
Ultra-320 SCSI (Ultra4 SCSI) (16 bits/80 MHz DDR) align=right align=right
Serial Attached SCSI (SAS) SAS-1 align=right align=right 2004
align=right align=right 2004
SDHC/SDXC/SDUC (UHS-III Full Duplex) align=right
Fibre Channel 4GFC (4.25 GHz) align=right align=right 2004
Serial Attached SCSI (SAS) SAS-2 align=right align=right 2009
align=right align=right 2008
Fibre Channel 8GFC (8.50 GHz) align=right align=right 2005
SDHC/SDXC/SDUC (SD Express) align=right
align=right align=right 2009
align=right align=right 2004
align=right align=right 2009
Serial Attached SCSI (SAS) SAS-3 align=right align=right 2013
Fibre Channel 16GFC (14.025 GHz) align=right align=right 2011
align=right align=right 2013
Serial Attached SCSI (SAS) SAS-4 align=right align=right 2017
UFS (version 3.0) align=right 2018
Fibre Channel 32GFC (28.05 GHz) align=right align=right 2016
NVMe over M.2 or U.2 (using PCI Express 3.0 ×4 link) align=right align=right 2013
iSCSI over InfiniBandalign=right align=right 2007
NVMe over M.2 or U.2 (using PCI Express 4.0 ×4 link) align=right align=right 2017
iSCSI over 100G Ethernet align=right align=right 2010
FCoE over 100G Ethernet align=right align=right 2010
NVMe over M.2, U.2, U.3 or EDSFF (using PCI Express 5.0 ×4 link) align=right align=right 2019

Uses 8b/10b encoding Uses 64b/66b encoding Uses 128b/150b encoding

Peripheral

Technology Rate Year
align=right align=right 1986
align=right align=right 1987
align=right align=right 1983
CBM Bus max[39] align=right align=right 1981
Serial RS-232 max align=right align=right 1962
align=right align=right 1998
Parallel (Centronics/IEEE 1284) align=right
Serial 16550 UART max align=right align=right
USB 1.0 low speed align=right align=right 1996
Serial UART max align=right align=right
GPIB/HPIB (IEEE-488.1) IEEE-488 max. align=right align=right
Serial EIA-422 max. align=right align=right
USB 1.0 full speed align=right align=right 1996
Parallel (Centronics/IEEE 1284) EPP (Enhanced Parallel Port) align=right 1992
Parallel (Centronics/IEEE 1284) ECP (Extended Capability Port) 1994
Serial EIA-485 max. align=right align=right
GPIB/HPIB (IEEE-488.1-2003) IEEE-488 max. align=right align=right
FireWire (IEEE 1394) 100 align=right align=right 1995
FireWire (IEEE 1394) 200 align=right align=right 1995
FireWire (IEEE 1394) 400 align=right align=right 1995
USB 2.0 high speed align=right align=right 2000
FireWire (IEEE 1394b) 800[40] align=right align=right 2002
align=right align=right
FireWire (IEEE 1394b) 1600 align=right align=right 2007
align=right align=right
eSATA (SATA 300) align=right align=right 2004
CoaXPress Base (up and down bidirectional link) align=right + align=right 2009
FireWire (IEEE 1394b) 3200 align=right align=right 2007
align=right align=right
align=right align=right
USB 3.0 SuperSpeed (aka USB
3.1 Gen 1, USB 3.2 Gen 1x1)
align=right align=right 2010
eSATA (SATA 600) align=right align=right 2011
CoaXPress full (up and down bidirectional link) align=right + align=right 2009
align=right align=right
USB 3.1 SuperSpeed+ (aka USB 3.1 Gen 2, USB
3.2 Gen 1x2, USB 3.2 Gen 2x1, USB4 Gen 2×1)
align=right align=right 2013
align=right align=right
align=right align=right 2011
USB 3.2 SuperSpeed+ (aka USB 3.2 Gen
2×2 USB4 Gen 2×2, USB4 Gen 3×1)[41]
align=right align=right 2017
align=right align=right 2013
FPGA Mezzanine Card Plus (FMC+)[42] 28 Gbit/s align=right 3.5 GB/s 2019
align=right align=right
USB4 Gen 3×2[43] align=right 2019
align=right align=right 2015
Thunderbolt 4align=right align=right 2020
align=right align=right
USB4 Gen 4 [44] align=right 2022
Thunderbolt 5align=right align=right 2024
USB4 Gen 4 Asymmetric align=right 2022
Thunderbolt 5 Asymmetricalign=right align=right 2024

MAC to PHY

TechnologyChannelsBitsMGT LanesRate Year
CountEncodingRate
Media Independent Interface (MII)14
Reduced MII (RMII)12
Serial MII (SMII)11
Gigabit MII (GMII)18
Reduced gigabit/s MII (RGMII)14
Ten-bit interface (TBI)110
Serial gigabit/s MII (SGMII)118b/10b
Reduced serial gigabit/s MII (RSGMII)218b/10b
Reduced serial gigabit/s MII plus (RSGMII-PLUS)418b/10b
Quad serial gigabit/s MII (QSGMII)418b/10b
10 gigabit/s MII (XGMII)132
XGMII attachment unit interface (XAUI)148b/10b
Reduced Pin XAUI (RXAUI)128b/10b
XFI/SFI1164b/66b
40 gigabit/s MII (XLGMII, on-chip only)1
100 gigabit/s MII (CGMII, on-chip only)12008
100G AUI (CAUI-10)11064b/66b
100G AUI (CAUI-4)1464b/66b

PHY to XPDR

Dynamic random-access memory

The table below shows values for PC memory module types.These modules usually combine multiple chips on one circuit board.SIMM modules connect to the computer via an 8-bit- or 32-bit-wide interface. RIMM modules used by RDRAM are 16-bit- or 32-bit-wide.[45] DIMM modules connect to the computer via a 64-bit-wide interface.Some other computer architectures use different modules with a different bus width.

In a single-channel configuration, only one module at a time can transfer information to the CPU.In multi-channel configurations, multiple modules can transfer information to the CPU at the same time, in parallel.FPM, EDO, SDR, and RDRAM memory was not commonly installed in a dual-channel configuration. DDR and DDR2 memory is usually installed in single- or dual-channel configuration. DDR3 memory is installed in single-, dual-, tri-, and quad-channel configurations.Bit rates of multi-channel configurations are the product of the module bit-rate (given below) and the number of channels.

Module type Chip type Internal clock Bus clock Bus speed Transfer rate
FPM DRAM 70 ns tRAC align=right align=right align=right
EDO DRAM (486 CPU) 60 ns tRAC align=right align=right align=right
EDO DRAM (Pentium CPU) 60 ns tRAC align=right align=right align=right
PC-66 SDR SDRAM 10/15 ns align=right align=right align=right align=right align=right
PC-100 SDR SDRAM 8 ns align=right align=right align=right align=right align=right
PC-133 SDR SDRAM 7/7.5 ns align=right align=right align=right align=right align=right
RIMM-1200 RDRAM PC600 align=right align=right align=right align=right align=right
RIMM-1400 RDRAM PC700 align=right align=right align=right align=right align=right
RIMM-1600 RDRAM PC800 align=right align=right align=right align=right align=right
PC-1600 DDR SDRAM DDR-200 align=right align=right align=right align=right align=right
RIMM-2100 RDRAM PC1066 align=right align=right align=right align=right align=right
PC-2100 DDR SDRAM DDR-266 align=right align=right align=right align=right align=right
RIMM-2400 RDRAM PC1200 align=right align=right align=right align=right align=right
PC-2700 DDR SDRAM DDR-333 align=right align=right align=right align=right align=right
PC-3200 DDR SDRAM DDR-400 align=right align=right align=right align=right align=right
PC2-3200 DDR2 SDRAM DDR2-400 align=right align=right align=right align=right align=right
PC-3500 DDR SDRAM DDR-433 align=right align=right align=right align=right align=right
PC-3700 DDR SDRAM DDR-466 align=right align=right align=right align=right align=right
PC-4000 DDR SDRAM DDR-500 align=right align=right align=right align=right align=right
PC-4200 DDR SDRAM DDR-533 align=right align=right align=right align=right align=right
PC2-4200 DDR2 SDRAM DDR2-533 align=right align=right align=right align=right align=right
PC-4400 DDR SDRAM DDR-550 align=right align=right align=right align=right align=right
PC-4800 DDR SDRAM DDR-600 align=right align=right align=right align=right align=right
PC2-5300 DDR2 SDRAM DDR2-667 align=right align=right align=right align=right align=right
PC2-6000 DDR2 SDRAM DDR2-750 align=right align=right align=right align=right align=right
PC2-6400 DDR2 SDRAM DDR2-800 align=right align=right align=right align=right align=right
PC3-6400 DDR3 SDRAM DDR3-800 align=right align=right align=right align=right align=right
PC2-7200 DDR2 SDRAM DDR2-900 align=right align=right align=right align=right align=right
PC2-8000 DDR2 SDRAM DDR2-1000 align=right align=right align=right align=right align=right
PC2-8500 DDR2 SDRAM DDR2-1066 align=right align=right align=right align=right align=right
PC3-8500 DDR3 SDRAM DDR3-1066 align=right align=right align=right align=right align=right
PC2-8800 DDR2 SDRAM DDR2-1100 align=right align=right align=right align=right align=right
PC2-9200 DDR2 SDRAM DDR2-1150 align=right align=right align=right align=right align=right
PC2-9600 DDR2 SDRAM DDR2-1200 align=right align=right align=right align=right align=right
PC2-10000 DDR2 SDRAM DDR2-1250 align=right align=right align=right align=right align=right
PC3-10600 DDR3 SDRAM DDR3-1333 align=right align=right align=right align=right align=right
PC3-11000 DDR3 SDRAM DDR3-1375 align=right align=right align=right align=right align=right
PC3-12800 DDR3 SDRAM DDR3-1600 align=right align=right align=right align=right align=right
PC3-13000 DDR3 SDRAM DDR3-1625 align=right align=right align=right align=right align=right
PC3-14400 DDR3 SDRAM DDR3-1800 align=right align=right align=right align=right align=right
PC3-14900 DDR3 SDRAM DDR3-1866 align=right align=right align=right align=right align=right
PC3-16000 DDR3 SDRAM DDR3-2000 align=right align=right align=right align=right align=right
PC3-17000 DDR3 SDRAM DDR3-2133 align=right align=right align=right align=right align=right
PC4-17000 DDR4 SDRAM DDR4-2133 align=right align=right align=right align=right align=right
PC3-17600 DDR3 SDRAM DDR3-2200 align=right align=right align=right align=right align=right
PC3-19200 DDR3 SDRAM DDR3-2400 align=right align=right align=right align=right align=right
PC4-19200 DDR4 SDRAM DDR4-2400 align=right align=right align=right align=right align=right
PC3-21300 DDR3 SDRAM DDR3-2666 align=right align=right align=right align=right align=right
PC4-21300 DDR4 SDRAM DDR4-2666 align=right align=right align=right align=right align=right
PC3-24000 DDR3 SDRAM DDR3-3000 align=right align=right align=right align=right align=right
PC4-24000 DDR4 SDRAM DDR4-3000 align=right align=right align=right align=right align=right
PC4-25600 DDR4 SDRAM DDR4-3200 align=right align=right align=right align=right align=right
PC5-41600 DDR5 SDRAM DDR5-5200 align=right align=right align=right align=right align=right
PC5-44800 DDR5 SDRAM DDR5-5600 align=right align=right align=right align=right align=right
PC5-51200 DDR5 SDRAM DDR5-6400 align=right align=right align=right align=right align=right
PC5-57600 DDR5 SDRAM DDR5-7200 align=right align=right align=right align=right align=right
PC5-64000 DDR5 SDRAM DDR5-8000 align=right align=right align=right align=right align=right
PC5-70400 DDR5 SDRAM DDR5-8800 align=right align=right align=right align=right align=right

The clock rate at which DRAM memory cells operate. The memory latency is largely determined by this rate. Note that until the introduction of DDR4 the internal clock rate saw relatively slow progress. DDR/DDR2/DDR3 memory uses 2n/4n/8n (respectively) prefetch buffer to provide higher throughput, while the internal memory speed remains similar to that of the previous generation.

The memory speed or clock rate advertised by manufactures and suppliers usually refers to this rate (with 1 GT/s = 1 GHz). Note that modern types of memory use DDR bus with two transfers per clock.

Graphics processing units' RAM

RAM memory modules are also utilised by graphics processing units; however, memory modules for those differ somewhat from standard computer memory, particularly with lower power requirements, and are specialised to serve GPUs: for example, GDDR3 was fundamentally based on DDR2. Every graphics memory chip is directly connected to the GPU (point-to-point). The total GPU memory bus width varies with the number of memory chips and the number of lanes per chip. For example, GDDR5 specifies either 16 or 32 lanes per device (chip), while GDDR5X specifies 64 lanes per chip. Over the years, bus widths rose from 64-bit to 512-bit and beyond: e.g. HBM is 1024 bits wide.[46] Because of this variability, graphics memory speeds are sometimes compared per pin. For direct comparison to the values for 64-bit modules shown above, video RAM is compared here in 64-lane lots, corresponding to two chips for those devices with 32-bit widths.In 2012, high-end GPUs used 8 or even 12 chips with 32 lanes each, for a total memory bus width of 256 or 384 bits. Combined with a transfer rate per pin of 5 GT/s or more, such cards could reach 240 GB/s or more.

RAM frequencies used for a given chip technology vary greatly. Where single values are given below, they are examples from high-end cards.[47] Since many cards have more than one pair of chips, the total bandwidth is correspondingly higher. For example, high-end cards often have eight chips, each 32 bits wide, so the total bandwidth for such cards is four times the value given below.

Chip typeModule type Memory clock Transfers/s Bandwidth
DDR64 lanes <-- GF 6800 -->
DDR264 lanes <-- GF 5800 Ultra -->
GDDR364 lanes <-- GF GTX 285 -->
GDDR464 lanes <-- Rd HD 4670 -->
GDDR5[48] 64 lanes
GDDR5X[49] 64 lanes
GDDR664 lanes
GDDR6X[50] 64 lanes
HBM[51] 1024 lanes (8 channels @ 128 lanes ea)
HBM21024 lanes (8 channels @ 128 lanes ea)
HBM2e[52] 1024 lanes (8 channels @ 128 lanes ea)
HBM3[53] 1024 lanes (16 channels @ 64 lanes ea)
HMC128 lanes (8 links @ 16 lanes ea)(internal)
HMC264 lanes (4 links @ 16 lanes ea)(internal)
HBM3e[54] 1024 lanes (16 channels @ 64 lanes ea)up to up to up to up to

Digital audio

Device Rate
I²S @ 24bit/48 kHz
AES/EBU @ 24-bit/48 kHz
ADAT Lightpipe (Type I) 1.152
AC'97
HDMI
Intel High Definition Audio rev. 1.0[55] outbound; 24 Mbit/s inbound outbound; 3 inbound
MADI

Digital video interconnects

Data rates given are from the video source (e.g., video card) to receiving device (e.g., monitor) only. Out of band and reverse signaling channels are not included.

Device Rate Year
HD-SDI (SMPTE 292M)
Camera Link Base (single) 24-bit 85 MHz
LVDS Display Interface[56]
3G-SDI (SMPTE 424M) 2006
1999
HDMI 1.0[57] 2002
Camera Link full (dual) 64-bit 85 MHz
6G-SDI (SMPTE 2081) 2015
DisplayPort 1.0 (4-lane Reduced Bit Rate)[58] 2006
1999
align=right align=right 2011
HDMI 1.3[59] 2006
DisplayPort 1.0 (4-lane High Bit Rate) 2006
12G-SDI (SMPTE 2082) 2015
HDMI 2.0[60] 2013
align=right align=right 2013
DisplayPort 1.2 (4-lane High Bit Rate 2) 2009
DisplayPort 1.3 (4-lane High Bit Rate 3) 2014 (2016)
DisplayPort 1.4/1.4a2016 (2018)
align=right align=right 2015
align=right align=right 2015
HDMI 2.1[61] 2017
DisplayPort 2.0/2.1 (4-lane)[62] 2019 (2022)
SMPTE 2110 over 100 Gigabit Ethernetalign=right align=right 2017

Uses 8b/10b encoding (20% coding overhead) Uses 16b/18b encoding (11% overhead) Uses 128b/132b encoding (3% overhead)

See also

External links

Notes and References

  1. https://www.nist.gov/pml/div688/grp40/upload/NIST-Enhanced-WWVB-Broadcast-Format-sept-2012-Radio-Station-staff.pdf NIST-Enhanced-WWVB-Broadcast-Format-sept-2012-Radio-Station-staff
  2. http://tf.nist.gov/timefreq/general/pdf/2422.pdf Archived version
  3. TTY uses a Baudot code, not ASCII. This uses 5 bits per character instead of 8, plus one start and approx. 1.5 stop bits (7.5 total bits per character sent).
  4. Web site: ITU-T Recommendation database.
  5. Web site: A Brief History of Captioned Television . www.ncicap.org. dead . https://web.archive.org/web/20110719060406/http://www.ncicap.org/caphist.asp . 19 July 2011.
  6. Web site: Human Speech May Have a Universal Transmission Rate: 39 Bits Per Second . 2022-06-24 . 2019-09-04 . science.org . en.
  7. Web site: ITU-T Recommendations: V Series: Data communication over the telephone network . ITU.
  8. http://www.adam.com.au/about_history.php Adam.com.au
  9. Web site: Recommendation G.991.1 (10/98) . ITU.
  10. http://www.cablemodem.com/specifications/specifications10.html DOCSIS 1.0
  11. http://www.cablemodem.com/specifications/specifications20.html DOCSIS 2.0
  12. Web site: G.983.2 . ITU.
  13. http://www.cablemodem.com/primer/ DOCSIS 3.0
  14. Web site: G.984.4 : Gigabit-capable passive optical networks (G-PON) . ITU.
  15. http://www.geek.com/news/docsis-3-1-could-let-cable-companies-compete-with-google-fiber-1575770/ DOCSIS 3.1
  16. Web site: G.987 : 10-Gigabit-capable passive optical network (XG-PON) systems . ITU.
  17. Web site: G.989 : 40-Gigabit-capable passive optical networks (NG-PON2) . ITU.
  18. https://mocalliance.org/news/pr_102207_PQoS_and_175_Mbp.php "MoCA 1.1 improves throughput"
  19. InfiniBand FDR-10, FDR and EDR use a 64b/66b encoding scheme.
  20. Web site: Lee . Bill . Chair of marketing working group . IBTA Blog . IBTA . 25 June 2018 . infinibandta-blog . https://web.archive.org/web/20180625185215/http://blog.infinibandta.org/2015/12/14/infiniband-roadmap-%E2%80%93-charting-speeds-for-future-needs/ . 2018-06-25 . dead.
  21. https://www.mac-history.net/computer-history/2008-05-25/apple-i-and-apple-ii Mac History
  22. http://www.vectronicsappleworld.com/profiles/83.html VAW: Apple IIgs Specs
  23. Web site: After 35 years of I2C, I3C Improves Capability and Performance Sensors and MEMS. eecatalog.com. 2019-06-26.
  24. The Zorro II bus use 4 clocks per 16-Bit of data transferred. See the Zorro III technical specification for more information.
  25. [:ja:Cバス|Japan wikipedia article]
  26. http://www.controlled.com/std32mg/std32.pdf STD 32 Bus Specification and Designer's Guide
  27. [:ja:New Extend Standard Architecture|Japan wikipedia article]
  28. https://www.ibm.com/common/ssi/rep_ca/9/877/ENUSZG92-0339/index.html RISC System/6000 POWERstation/POWERserver 580
  29. https://books.google.com/books?id=XBvHNQzM2P0C&dq=APbus+MIPS+mhz&pg=PA7 Local Area Networks Newsletter by Paul Polishuk, September 1992, Page 7
  30. [:ja:98ローカルバス|Japan wikipedia article]
  31. [Dave Haynie]
  32. Dave Haynie, designer of the Zorro III bus, states in this posting that Zorro III is an asynchronous bus and therefore does not have a classical MHz rating. A maximum theoretical MHz value may be derived by examining timing constraints detailed in the Zorro III technical specification, which should yield about 37.5 MHz. No existing implementation performs to this level.
  33. Dave Haynie, designer of the Zorro III bus, claims in this posting that Zorro III has a max burst rate of 150 MB/s.
  34. InfiniBand SDR, DDR and QDR use an 8b/10b encoding scheme.
  35. News: Born . Eric . PCIe 4.0 specification finally out with 16 GT/s on tap . 21 February 2018 . Tech Report . 8 June 2017.
  36. Web site: PCI-SIG Finalizes PCIe 5.0 Specification: x16 Slots to Reach 64GB/sec . Smith . Ryan . www.anandtech.com . 2019-06-26.
  37. Web site: PCI Express 6.0 Specification Finalized: X16 Slots to Reach 128GBps.
  38. https://www.intel.com/content/www/us/en/design/technologies-and-topics/low-pin-count-interface-specification.html Intel LPC Interface Specification 1.1
  39. Web site: CCOM - Diskettenlaufwerke und Festplatten.
  40. FireWire (IEEE 1394b) uses an 8b/10b encoding scheme.
  41. News: Dent . Steve . USB 3.2 doubles your connection speeds with the same port . 26 July 2017 . Engadget . 26 July 2017.
  42. Web site: VITA - Online store product . 2022-03-23 . www.vita.com.
  43. Web site: USB4 Specification Announced: Adopting Thunderbolt 3 Protocol for 40 Gbps USB . Shilov . Anton . www.anandtech.com . 2019-06-26.
  44. USB Promoter Group Announces USB4® Version 2.0 . www.businesswire.com . September 2022 . 2022-09-01.
  45. Web site: RDRAM Memory Architecture.
  46. [Comparison of AMD graphics processing units]
  47. [Comparison of Nvidia graphics processing units]
  48. Web site: GRAPHICS DOUBLE DATA RATE (GDDR5) SGRAM STANDARD JESD212C . JEDEC . 2016-02-01 . 2016-08-10.
  49. Web site: GRAPHICS DOUBLE DATA RATE (GDDR5X) SGRAM STANDARD JESD232 . JEDEC . 2015-11-01 . 2016-08-10.
  50. Web site: Doubling I/O Performance with PAM4 - Micron Innovates GDDR6X to Accelerate Graphics Memory . Micron . 11 September 2020.
  51. News: Shilov . Anton . JEDEC Publishes HBM2 Specification . 16 May 2017 . Anandtech . 20 January 2016.
  52. News: Harding . Scharon . What Are HBM, HBM2 and HBM2E? A Basic Definition. 4 May 2022 . Tom's Hardware. 15 April 2021.
  53. News: Prickett Morgan . Timothy . The HBM3 roadmap is just getting started. 4 May 2022 . TheNextPlatform . 6 April 2022.
  54. News: Prickett Morgan . Timothy . The HBM3 roadmap is just getting started. 4 May 2022 . TheNextPlatform . 6 April 2022.
  55. https://www.intel.com.au/content/dam/www/public/us/en/documents/product-specifications/high-definition-audio-specification.pdf High Definition Audio Specification
  56. http://www.videsignline.com/208403647;jsessionid=OD1LDTBAAOB4EQSNDLQCKH0CJUNN2JVN?printableArticle=true Videsignline.com
  57. Web site: HDMI 1.3. What you need to know.htm . Octavainc.com . 2008-10-20 . dead . https://web.archive.org/web/20081205081432/http://www.octavainc.com/HDMI%201.3.htm . 2008-12-05.
  58. http://www.displayport.org/cms/sites/default/files/downloads/DisplayPort_Technical_Overview.pdf Displayport Technical Overview
  59. Web site: HDMI.org . 2008-10-20 . 2018-02-22 . https://web.archive.org/web/20180222200543/https://www.hdmi.org/learningcenter/faq.aspx#12 . dead.
  60. Web site: HDMI.org . 2013-11-07 . 2019-01-05 . https://web.archive.org/web/20190105180631/https://www.hdmi.org/manufacturer/hdmi_2_0/hdmi_2_0_faq.aspx#119 . dead.
  61. Web site: HDMI.org . 2017-01-10 . 2017-01-06 . https://web.archive.org/web/20170106195344/http://www.hdmi.org/manufacturer/hdmi_2_1/index.aspx . dead.
  62. Web site: VESA Releases DisplayPort 2.1 Specification . 17 October 2022 . 2023-01-19 . 2022-11-23 . https://web.archive.org/web/20221123210847/https://vesa.org/featured-articles/vesa-releases-displayport-2-1-specification/.