List of convolutions of probability distributions explained

In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively. Many well known distributions have simple convolutions. The following is a list of these convolutions. Each statement is of the form

n
\sum
i=1

Xi\simY

where

X1,X2,...,Xn

are independent random variables, and

Y

is the distribution that results from the convolution of

X1,X2,...,Xn

. In place of

Xi

and

Y

the names of the corresponding distributions and their parameters have been indicated.

Discrete distributions

n
\sum
i=1

Bernoulli(p)\simBinomial(n,p)    0<p<1n=1,2,...

n
\sum
i=1

Binomial(ni,p)\sim

n
Binomial\left(\sum
i=1

ni,p\right)    0<p<1ni=1,2,...

n
\sum
i=1

NegativeBinomial(ni,p)\sim

n
NegativeBinomial\left(\sum
i=1

ni,p\right)    0<p<1ni=1,2,...

n
\sum
i=1

Geometric(p)\simNegativeBinomial(n,p)    0<p<1n=1,2,...

n
\sum
i=1

Poisson(λi)\sim

n
Poisson\left(\sum
i=1

λi\right)    λi>0

Continuous distributions

n
\sum
i=1

\operatorname{Stable}\left(\alpha,\betai,ci,\mu

i\right)=\operatorname{Stable}\left(\alpha,
n
\sum\betai
\alpha
c
i
i=1
n
\sum
\alpha
c
i
i=1

,\left(

n
\sum
i=1
\alpha
c
i

\right)1/\alpha

n\mu
,\sum
i\right)

   0<\alphai\le2-1\le\betai\le1ci>0infty<\mui<infty

The following three statements are special cases of the above statement:

n
\sum
i=1

\operatorname{Normal}(\mui,\sigma

2)
i

\sim

n
\operatorname{Normal}\left(\sum
i=1

\mui,

n
\sum
i=1
2\right)
\sigma
i

   -infty<\mui<infty

2>0  
\sigma
i

(\alpha=2,\betai=0)

n
\sum
i=1

\operatorname{Cauchy}(ai,\gammai)\sim

n
\operatorname{Cauchy}\left(\sum
i=1

ai,

n
\sum
i=1

\gammai\right)    -infty<ai<infty\gammai>0(\alpha=1,\betai=0)

n
\sum
i=1

\operatorname{Levy}(\mui,ci)\sim

n
\operatorname{Levy}\left(\sum
i=1

\mui,

n
\left(\sum
i=1
2\right)
\sqrt{c
i}\right)

   -infty<\mui<inftyci>0   (\alpha=1/2,\betai=1)

n
\sum
i=1

\operatorname{Gamma}(\alphai,\beta)\sim

n
\operatorname{Gamma}\left(\sum
i=1

\alphai,\beta\right)    \alphai>0\beta>0

n
\sum
i=1

\operatorname{Voigt}(\mui,\gammai,\sigmai)\sim

n
\operatorname{Voigt}\left(\sum
i=1

\mui,\sum

n
i=1

\gammai,\sqrt{\sum

n
i=1
2}\right)
\sigma
i

   -infty<\mui<infty\gammai>0\sigmai>0

[1]
n
\sum
i=1

\operatorname{VarianceGamma}(\mui,\alpha,\beta,λi)\sim

n
\operatorname{VarianceGamma}\left(\sum
i=1

\mui,\alpha,\beta,

n
\sum
i=1

λi\right)    -infty<\mui<inftyλi>0\sqrt{\alpha2-\beta2}>0

[2]
n
\sum
i=1

\operatorname{Exponential}(\theta)\sim\operatorname{Erlang}(n,\theta)    \theta>0n=1,2,...

n
\sum
i=1

\operatorname{Exponential}(λi)\sim\operatorname{Hypoexponential}(λ1,...,λn)    λi>0

[3]
n
\sum
i=1
2(r
\chi
i)

\sim

n
\chi
i=1

ri\right)    ri=1,2,...

r
\sum
i=1

N2(0,1)\sim

2
\chi
r

   r=1,2,...

n(X
\sum
i

-\barX)2\sim\sigma2

2
\chi
n-1

,

where

X1,...,Xn

is a random sample from

N(\mu,\sigma2)

and

\barX=

1
n
n
\sum
i=1

Xi.

Mixed distributions:

2)+\operatorname{Cauchy}(x
\operatorname{Normal}(\mu,\sigma
0,\gamma)

\sim\operatorname{Voigt}(\mu+x0,\sigma,\gamma)    -infty<\mu<infty-infty<x0<infty\gamma>0\sigma>0

See also

Sources

Notes and References

  1. Web site: 2016 . 2012 . VoigtDistribution . 2021-04-08 . Wolfram Language Documentation.
  2. Web site: 2012 . VarianceGammaDistribution . 2021-04-09 . Wolfram Language Documentation . 2016.
  3. 2012.08498 . George P. . Yanev . Exponential and Hypoexponential Distributions: Some Characterizations . Mathematics . 2020-12-15. 8 . 12 . 2207 . 10.3390/math8122207 . free .