In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively. Many well known distributions have simple convolutions. The following is a list of these convolutions. Each statement is of the form
n | |
\sum | |
i=1 |
Xi\simY
X1,X2,...,Xn
Y
X1,X2,...,Xn
Xi
Y
n | |
\sum | |
i=1 |
Bernoulli(p)\simBinomial(n,p) 0<p<1 n=1,2,...
n | |
\sum | |
i=1 |
Binomial(ni,p)\sim
n | |
Binomial\left(\sum | |
i=1 |
ni,p\right) 0<p<1 ni=1,2,...
n | |
\sum | |
i=1 |
NegativeBinomial(ni,p)\sim
n | |
NegativeBinomial\left(\sum | |
i=1 |
ni,p\right) 0<p<1 ni=1,2,...
n | |
\sum | |
i=1 |
Geometric(p)\simNegativeBinomial(n,p) 0<p<1 n=1,2,...
n | |
\sum | |
i=1 |
Poisson(λi)\sim
n | |
Poisson\left(\sum | |
i=1 |
λi\right) λi>0
n | |
\sum | |
i=1 |
\operatorname{Stable}\left(\alpha,\betai,ci,\mu
|
,\left(
n | |
\sum | |
i=1 |
\alpha | |
c | |
i |
\right)1/\alpha
n\mu | |
,\sum | |
i\right) |
0<\alphai\le2 -1\le\betai\le1 ci>0 infty<\mui<infty
The following three statements are special cases of the above statement:
n | |
\sum | |
i=1 |
\operatorname{Normal}(\mui,\sigma
2) | |
i |
\sim
n | |
\operatorname{Normal}\left(\sum | |
i=1 |
\mui,
n | |
\sum | |
i=1 |
2\right) | |
\sigma | |
i |
-infty<\mui<infty
2>0 | |
\sigma | |
i |
(\alpha=2,\betai=0)
n | |
\sum | |
i=1 |
\operatorname{Cauchy}(ai,\gammai)\sim
n | |
\operatorname{Cauchy}\left(\sum | |
i=1 |
ai,
n | |
\sum | |
i=1 |
\gammai\right) -infty<ai<infty \gammai>0 (\alpha=1,\betai=0)
n | |
\sum | |
i=1 |
\operatorname{Levy}(\mui,ci)\sim
n | |
\operatorname{Levy}\left(\sum | |
i=1 |
\mui,
n | |
\left(\sum | |
i=1 |
2\right) | |
\sqrt{c | |
i}\right) |
-infty<\mui<infty ci>0 (\alpha=1/2,\betai=1)
n | |
\sum | |
i=1 |
\operatorname{Gamma}(\alphai,\beta)\sim
n | |
\operatorname{Gamma}\left(\sum | |
i=1 |
\alphai,\beta\right) \alphai>0 \beta>0
n | |
\sum | |
i=1 |
\operatorname{Voigt}(\mui,\gammai,\sigmai)\sim
n | |
\operatorname{Voigt}\left(\sum | |
i=1 |
\mui,\sum
n | |
i=1 |
\gammai,\sqrt{\sum
n | |
i=1 |
2}\right) | |
\sigma | |
i |
-infty<\mui<infty \gammai>0 \sigmai>0
n | |
\sum | |
i=1 |
\operatorname{VarianceGamma}(\mui,\alpha,\beta,λi)\sim
n | |
\operatorname{VarianceGamma}\left(\sum | |
i=1 |
\mui,\alpha,\beta,
n | |
\sum | |
i=1 |
λi\right) -infty<\mui<infty λi>0 \sqrt{\alpha2-\beta2}>0
n | |
\sum | |
i=1 |
\operatorname{Exponential}(\theta)\sim\operatorname{Erlang}(n,\theta) \theta>0 n=1,2,...
n | |
\sum | |
i=1 |
\operatorname{Exponential}(λi)\sim\operatorname{Hypoexponential}(λ1,...,λn) λi>0
n | |
\sum | |
i=1 |
2(r | |
\chi | |
i) |
\sim
n | |
\chi | |
i=1 |
ri\right) ri=1,2,...
r | |
\sum | |
i=1 |
N2(0,1)\sim
2 | |
\chi | |
r |
r=1,2,...
n(X | |
\sum | |
i |
-\barX)2\sim\sigma2
2 | |
\chi | |
n-1 |
,
X1,...,Xn
N(\mu,\sigma2)
\barX=
1 | |
n |
n | |
\sum | |
i=1 |
Xi.
Mixed distributions:
2)+\operatorname{Cauchy}(x | |
\operatorname{Normal}(\mu,\sigma | |
0,\gamma) |
\sim\operatorname{Voigt}(\mu+x0,\sigma,\gamma) -infty<\mu<infty -infty<x0<infty \gamma>0 \sigma>0