Let-7 microRNA precursor explained

let-7 microRNA precursor
Symbol:let-7
Rfam:RF00027
Mirbase:MI0000001
Mirbase Family:MIPF0000002
Rna Type:Gene
miRNA
Tax Domain:Eukaryota

The Let-7 microRNA precursor was identified from a study of developmental timing in C. elegans,[1] and was later shown to be part of a much larger class of non-coding RNAs termed microRNAs.[2] miR-98 microRNA precursor from human is a let-7 family member. Let-7 miRNAs have now been predicted or experimentally confirmed in a wide range of species (MIPF0000002[3]). miRNAs are initially transcribed in long transcripts (up to several hundred nucleotides) called primary miRNAs (pri-miRNAs), which are processed in the nucleus by Drosha and Pasha to hairpin structures of about 70 nucleotide. These precursors (pre-miRNAs) are exported to the cytoplasm by exportin5, where they are subsequently processed by the enzyme Dicer to a ~22 nucleotide mature miRNA. The involvement of Dicer in miRNA processing demonstrates a relationship with the phenomenon of RNA interference.

Genomic Locations

In human genome, the cluster let-7a-1/let-7f-1/let-7d is inside the region B at 9q22.3, with the defining marker D9S280-D9S1809. One minimal LOH (loss of heterozygosity) region, between loci D11S1345-D11S1316, contains the cluster miR-125b1/let-7a-2/miR-100. The cluster miR-99a/let-7c/miR-125b-2 is in a 21p11.1 region of HD (homozygous deletions). The cluster let-7g/miR-135-1 is in region 3 at 3p21.1-p21.2.[4]

The let-7 family

The lethal-7 (let-7) gene was first discovered in the nematode as a key developmental regulator and became one of the first two known microRNAs (the other one is lin-4).[5] Soon, let-7 was found in fruit fly, and identified as the first known human miRNA by a BLAST (basic local alignment search tool) research.[6] The mature form of let-7 family members is highly conserved across species.

In C.elegans

In C.elegans, the let-7 family consists of genes encoding nine miRNAs sharing the same seed sequence.[7] Among them, let-7, mir-84, mir-48 and mir-241 are involved in C.elegans heterochronic pathway, sequentially controlling developmental timing of larva transitions.[8] Most animals with loss-of-function let-7 mutation burst through their vulvas and die, and therefore the mutant is lethal (let). The mutants of other let-7 family members have a radio-resistant phenotype in vulval cells, which may be related to their ability to repress RAS.[9]

In Drosophila

There is only one single let-7 gene in the Drosophila genome, which has the identical mature sequence to the one in C.elegans.[10] The role of let-7 has been demonstrated in regulating the timing of neuromuscular junction formation in the abdomen and cell-cycle in the wing.[11] Furthermore, the expression of pri-, pre- and mature let-7 have the same rhythmic pattern with the hormone pulse before each cuticular molt in Drosophila.[12]

In vertebrates

The let-7 family has a lot more members in vertebrates than in C.elegans and Drosophila. The sequences, expression timing, as well as genomic clustering of these miRNAs members are all conserved across species.[13] The direct role of let-7 family in vertebrate development has not been clearly shown as in less complex organisms, yet the expression pattern of let-7 family is indeed temporally regulated during developmental processes.[14] Functionally, let-7 has been shown in early vertebrates to control the differentiation of mesoderm and ectoderm.[15] Given that the expression levels of let-7 members are significantly low in human cancers and cancer stem cells,[16] the major function of let-7 genes may be to promote terminal differentiation in development and tumor suppression.

Regulation of expression

Although the levels of mature let-7 members are undetectable in undifferentiated cells, the primary transcripts and the hairpin precursors of let-7 are present in these cells.[17] It indicates that the mature let-7 miRNAs may be regulated in a post-transcriptional manner.

By pluripotency promoting factor LIN28

As one of the genes involved in (but not essential for) induced pluripotent stem (iPS) cell reprogramming,[18] LIN28 expression is reciprocal to that of mature let-7.[19] LIN28 selectively binds the primary and precursor forms of let-7, and inhibits the processing of pri-let-7 to form the hairpin precursor.[20] This binding is facilitated by the conserved loop sequence of primary let-7 family members and RNA-binding domains of LIN28 proteins.[21] Lin-28 uses two zinc knuckle domains to recognize the NGNNG motif in the let-7 precursors,[22] while the Cold-shock domain, connected by a flexible linker, binds to a closed loop in the precursors.[23] On the other hand, let-7 miRNAs in mammals have been shown to regulate LIN28,[24] which implies that let-7 might enhance its own level by repressing LIN28, its negative regulator.[25]

In autoregulatory loop with MYC

Expression of let-7 members is controlled by MYC binding to their promoters. The levels of let-7 have been reported to decrease in models of MYC-mediated tumorigenesis, and to increase when MYC is inhibited by chemicals.[26] In a twist, there are let-7-binding sites in MYC 3' untranslated region(UTR) according to bioinformatic analysis, and let-7 overexpression in cell culture decreased MYC mRNA levels.[27] Therefore, there is a double-negative feedback loop between MYC and let-7. Furthermore, let-7 could lead to IMP1(/insulin-like growth factor II mRNA-binding protein) depletion, which destabilizes MYC mRNA, thus forming an indirect regulatory pathway.[28]

Targets of let-7

Oncogenes: RAS, HMGA2

Let-7 has been demonstrated to be a direct regulator of RAS expression in human cells[29] All the three RAS genes in human, K-, N-, and H-, have the predicted let-7 binding sequences in their 3'UTRs. In lung cancer patient samples, expression of RAS and let-7 showed reciprocal pattern, which has low let-7 and high RAS in cancerous cells, and high let-7 and low RAS in normal cells. Another oncogene, high mobility group A2 (HMGA2), has also been identified as a target of let-7. Let-7 directly inhibits HMGA2 by binding to its 3'UTR.[30] Removal of let-7 binding site by 3'UTR deletion cause overexpression of HMGA2 and formation of tumor.

Cell cycle, proliferation, and apoptosis regulators

Microarray analyses revealed many genes regulating cell cycle and cell proliferation that are responsive to alteration of let-7 levels, including cyclin A2, CDC34, Aurora A and B kinases (STK6 and STK12), E2F5, and CDK8, among others.[29] Subsequent experiments confirmed the direct effects of some of these genes, such as CDC25A and CDK6.[31] Let-7 also inhibits several components of DNA replication machinery, transcription factors, even some tumor suppressor genes and checkpoint regulators.[29] Apoptosis is regulated by let-7 as well, through Casp3, Bcl2, Map3k1 and Cdk5 modulation.[32]

Immunity

Let-7 has been implicated in post-transcriptional control of innate immune responses to pathogenic agents. Macrophages stimulated with live bacteria or purified microbial components down-regulate the expression of several members of the let-7 microRNA family to relieve repression of immune-modulatory cytokines IL-6 and IL-10.[33] [34] Let-7 has also been implicated in the negative regulation of TLR4, the major immune receptor of microbial lipopolysaccharide and down-regulation of let-7 both upon microbial and protozoan infection might elevate TLR4 signalling and expression.[35] [36] Let-7 has furthermore been reported to regulate the production of cytokine IL-13 by T lymphocytes during allergic airway inflammation thus linking this microRNA to adaptive immunity as well.[37] Down-modulation of let-7 negative regulator Lin28b in human T lymphocytes is believed to accrue during early neonate development to reprogram the immune system towards defense.[38]

Potential clinical use in cancer

Given the prominent phenotype of cell overproliferation and undifferentiation by let-7 loss-of-function in nematodes, and the role of its targets on cell destiny determination, let-7 is closely associated with human cancer and acts as a tumor suppressor.

Diagnosis

Numerous reports have shown that the expression levels of let-7 are frequently low and the chromosomal clusters of let-7 are often deleted in many cancers. Let-7 is expressed at higher levels in more differentiated tumors, which also have lower levels of activated oncogenes such as RAS and HMGA2. Therefore, expression levels of let-7 could be prognostic markers in several cancers associated with differentiation stages.[39] In lung cancer, for example, reduced expression of let-7 is significantly correlated with reduced postoperative survival.[40] The expression of let-7b and let-7g microRNAs are significantly associated with overall survival in 1262 breast cancer patients.[41]

Therapy

Let-7 is also a very attractive potential therapeutic that can prevent tumorigenesis and angiogenesis, typically in cancers that underexpress let-7.[42] Lung cancer, for instance, has several key oncogenic mutations including p53, RAS and MYC, some of which may directly correlate with the reduced expression of let-7, and may be repressed by introduction of let-7. Intranasal administration of let-7 has already been found effective in reducing tumor growth in a transgenic mouse model of lung cancer.[43] Similar restoration of let-7 was also shown to inhibit cell proliferation in breast, colon and hepatic cancers, lymphoma, and uterine leiomyoma.[44]

Further reading

External links

Notes and References

  1. Rougvie AE . Control of developmental timing in animals . Nature Reviews. Genetics . 2 . 9 . 690–701 . September 2001 . 11533718 . 10.1038/35088566 . 44335211 .
  2. Ambros V . microRNAs: tiny regulators with great potential . Cell . 107 . 7 . 823–826 . December 2001 . 11779458 . 10.1016/S0092-8674(01)00616-X . free .
  3. http://mirbase.org/cgi-bin/mirna_summary.pl?fam=MIPF0000002 MIPF0000002
  4. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM . 6 . Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers . Proceedings of the National Academy of Sciences of the United States of America . 101 . 9 . 2999–3004 . March 2004 . 14973191 . 365734 . 10.1073/pnas.0307323101 . free . 2004PNAS..101.2999C .
  5. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G . 6 . The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature . 403 . 6772 . 901–906 . February 2000 . 10706289 . 10.1038/35002607 . 4384503 . 2000Natur.403..901R .
  6. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G . 6 . Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA . Nature . 408 . 6808 . 86–89 . November 2000 . 11081512 . 10.1038/35040556 . 4401732 . 2000Natur.408...86P .
  7. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP . 6 . The microRNAs of Caenorhabditis elegans . Genes & Development . 17 . 8 . 991–1008 . April 2003 . 12672692 . 196042 . 10.1101/gad.1074403 .
  8. Moss EG . Heterochronic genes and the nature of developmental time . Current Biology . 17 . 11 . R425–R434 . June 2007 . 17550772 . 10.1016/j.cub.2007.03.043 . free .
  9. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ . 6 . MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy . Cancer Research . 67 . 23 . 11111–11116 . December 2007 . 18056433 . 6070379 . 10.1158/0008-5472.CAN-07-2858 . free .
  10. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs . Science . 294 . 5543 . 853–858 . October 2001 . 11679670 . 10.1126/science.1064921 . free . 18101169 . 2001Sci...294..853L . 11858/00-001M-0000-0012-F65F-2 .
  11. Caygill EE, Johnston LA . Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs . Current Biology . 18 . 13 . 943–950 . July 2008 . 18571409 . 2736146 . 10.1016/j.cub.2008.06.020 .
  12. Thummel CS . Molecular mechanisms of developmental timing in C. elegans and Drosophila . Developmental Cell . 1 . 4 . 453–465 . October 2001 . 11703937 . 10.1016/S1534-5807(01)00060-0 . free .
  13. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . Identification of mammalian microRNA host genes and transcription units . Genome Research . 14 . 10A . 1902–1910 . October 2004 . 15364901 . 524413 . 10.1101/gr.2722704 .
  14. Kloosterman WP, Plasterk RH . The diverse functions of microRNAs in animal development and disease . Developmental Cell . 11 . 4 . 441–450 . October 2006 . 17011485 . 10.1016/j.devcel.2006.09.009 . free .
  15. Colas AR, McKeithan WL, Cunningham TJ, Bushway PJ, Garmire LX, Duester G, Subramaniam S, Mercola M . 6 . Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis . Genes & Development . 26 . 23 . 2567–2579 . December 2012 . 23152446 . 3521625 . 10.1101/gad.200758.112 .
  16. Esquela-Kerscher A, Slack FJ . Oncomirs - microRNAs with a role in cancer . Nature Reviews. Cancer . 6 . 4 . 259–269 . April 2006 . 16557279 . 10.1038/nrc1840 . 10620165 .
  17. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM . Extensive post-transcriptional regulation of microRNAs and its implications for cancer . Genes & Development . 20 . 16 . 2202–2207 . August 2006 . 16882971 . 1553203 . 10.1101/gad.1444406 .
  18. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA . 6 . Induced pluripotent stem cell lines derived from human somatic cells . Science . 318 . 5858 . 1917–1920 . December 2007 . 18029452 . 10.1126/science.1151526 . 86129154 . 2007Sci...318.1917Y .
  19. Viswanathan SR, Daley GQ, Gregory RI . Selective blockade of microRNA processing by Lin28 . Science . 320 . 5872 . 97–100 . April 2008 . 18292307 . 3368499 . 10.1126/science.1154040 . 2008Sci...320...97V .
  20. Newman MA, Thomson JM, Hammond SM . Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing . RNA . 14 . 8 . 1539–1549 . August 2008 . 18566191 . 2491462 . 10.1261/rna.1155108 .
  21. Piskounova E, Viswanathan SR, Janas M, LaPierre RJ, Daley GQ, Sliz P, Gregory RI . Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28 . The Journal of Biological Chemistry . 283 . 31 . 21310–21314 . August 2008 . 18550544 . 10.1074/jbc.C800108200 . free .
  22. Loughlin FE, Gebert LF, Towbin H, Brunschweiger A, Hall J, Allain FH . Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28 . Nature Structural & Molecular Biology . 19 . 1 . 84–89 . December 2011 . 22157959 . 10.1038/nsmb.2202 . 2201304 .
  23. Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P . Molecular basis for interaction of let-7 microRNAs with Lin28 . Cell . 147 . 5 . 1080–1091 . November 2011 . 22078496 . 3277843 . 10.1016/j.cell.2011.10.020 .
  24. Moss EG, Tang L . Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites . Developmental Biology . 258 . 2 . 432–442 . June 2003 . 12798299 . 10.1016/S0012-1606(03)00126-X . free .
  25. Ali PS, Ghoshdastider U, Hoffmann J, Brutschy B, Filipek S . Recognition of the let-7g miRNA precursor by human Lin28B . FEBS Letters . 586 . 22 . 3986–3990 . November 2012 . 23063642 . 10.1016/j.febslet.2012.09.034 . 28899778 . free .
  26. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT . 6 . Widespread microRNA repression by Myc contributes to tumorigenesis . Nature Genetics . 40 . 1 . 43–50 . January 2008 . 18066065 . 2628762 . 10.1038/ng.2007.30 .
  27. Koscianska E, Baev V, Skreka K, Oikonomaki K, Rusinov V, Tabler M, Kalantidis K . Prediction and preliminary validation of oncogene regulation by miRNAs . BMC Molecular Biology . 8 . 79 . September 2007 . 17877811 . 2096627 . 10.1186/1471-2199-8-79 . free .
  28. Ioannidis P, Mahaira LG, Perez SA, Gritzapis AD, Sotiropoulou PA, Kavalakis GJ, Antsaklis AI, Baxevanis CN, Papamichail M . 6 . CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells . The Journal of Biological Chemistry . 280 . 20 . 20086–20093 . May 2005 . 15769738 . 10.1074/jbc.M410036200 . free .
  29. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ . 6 . RAS is regulated by the let-7 microRNA family . Cell . 120 . 5 . 635–647 . March 2005 . 15766527 . 10.1016/j.cell.2005.01.014 . free .
  30. Mayr C, Hemann MT, Bartel DP . Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation . Science . 315 . 5818 . 1576–1579 . March 2007 . 17322030 . 2556962 . 10.1126/science.1137999 . 2007Sci...315.1576M .
  31. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D, Slack FJ . 6 . The let-7 microRNA represses cell proliferation pathways in human cells . Cancer Research . 67 . 16 . 7713–7722 . August 2007 . 17699775 . 10.1158/0008-5472.CAN-07-1083 . free .
  32. He YJ, Guo L, D ZH. (2009) Let-7 and mir-24 in uvb-induced apoptosis [Chinese]. Zhonghua Fang She Yi Xue Yu Fang Hu Za Zhi. 29, 234–6.
  33. Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J . Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family . The EMBO Journal . 30 . 10 . 1977–1989 . May 2011 . 21468030 . 3098495 . 10.1038/emboj.2011.94 .
  34. Liu Y, Chen Q, Song Y, Lai L, Wang J, Yu H, Cao X, Wang Q . 6 . MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation . FEBS Letters . 585 . 12 . 1963–1968 . June 2011 . 21609717 . 10.1016/j.febslet.2011.05.029 . 2416276 . free .
  35. Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, Dittman JW, Chen XM . MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge . Journal of Immunology . 183 . 3 . 1617–1624 . August 2009 . 19592657 . 2906382 . 10.4049/jimmunol.0804362 .
  36. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, Margioris AN, Tsichlis PN, Tsatsanis C . 6 . The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs . Immunity . 31 . 2 . 220–231 . August 2009 . 19699171 . 2865583 . 10.1016/j.immuni.2009.06.024 .
  37. Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A, Agrawal A, Ghosh B . Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation . The Journal of Allergy and Clinical Immunology . 128 . 5 . 1077–1085 . November 2011 . 21616524 . 10.1016/j.jaci.2011.04.034 .
  38. Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA . Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis . Science . 335 . 6073 . 1195–1200 . March 2012 . 22345399 . 3471381 . 10.1126/science.1216557 . 2012Sci...335.1195Y .
  39. Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME . 6 . Let-7 expression defines two differentiation stages of cancer . Proceedings of the National Academy of Sciences of the United States of America . 104 . 27 . 11400–11405 . July 2007 . 17600087 . 2040910 . 10.1073/pnas.0704372104 . free . 2007PNAS..10411400S .
  40. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T . 6 . Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival . Cancer Research . 64 . 11 . 3753–3756 . June 2004 . 15172979 . 10.1158/0008-5472.CAN-04-0637 . free .
  41. Lánczky A, Nagy Á, Bottai G, Munkácsy G, Szabó A, Santarpia L, Győrffy B . miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients . Breast Cancer Research and Treatment . 160 . 3 . 439–446 . December 2016 . 27744485 . 10.1007/s10549-016-4013-7 . 11165696 .
  42. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S . Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis . Circulation Research . 101 . 1 . 59–68 . July 2007 . 17540974 . 10.1161/CIRCRESAHA.107.153916 . free .
  43. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ . 6 . The let-7 microRNA reduces tumor growth in mouse models of lung cancer . Cell Cycle . 7 . 6 . 759–764 . March 2008 . 18344688 . 10.4161/cc.7.6.5834 . free .
  44. Barh D, Malhotra R, Ravi B, Sindhurani P . MicroRNA let-7: an emerging next-generation cancer therapeutic . Current Oncology . 17 . 1 . 70–80 . February 2010 . 20179807 . 2826782 . 10.3747/co.v17i1.356 .