Let-7 microRNA precursor explained
let-7 microRNA precursor |
Symbol: | let-7 |
Rfam: | RF00027 |
Mirbase: | MI0000001 |
Mirbase Family: | MIPF0000002 |
Rna Type: | Gene
- miRNA
|
Tax Domain: | Eukaryota |
The Let-7 microRNA precursor was identified from a study of developmental timing in C. elegans,[1] and was later shown to be part of a much larger class of non-coding RNAs termed microRNAs.[2] miR-98 microRNA precursor from human is a let-7 family member. Let-7 miRNAs have now been predicted or experimentally confirmed in a wide range of species (MIPF0000002[3]). miRNAs are initially transcribed in long transcripts (up to several hundred nucleotides) called primary miRNAs (pri-miRNAs), which are processed in the nucleus by Drosha and Pasha to hairpin structures of about 70 nucleotide. These precursors (pre-miRNAs) are exported to the cytoplasm by exportin5, where they are subsequently processed by the enzyme Dicer to a ~22 nucleotide mature miRNA. The involvement of Dicer in miRNA processing demonstrates a relationship with the phenomenon of RNA interference.
Genomic Locations
In human genome, the cluster let-7a-1/let-7f-1/let-7d is inside the region B at 9q22.3, with the defining marker D9S280-D9S1809. One minimal LOH (loss of heterozygosity) region, between loci D11S1345-D11S1316, contains the cluster miR-125b1/let-7a-2/miR-100. The cluster miR-99a/let-7c/miR-125b-2 is in a 21p11.1 region of HD (homozygous deletions). The cluster let-7g/miR-135-1 is in region 3 at 3p21.1-p21.2.[4]
The let-7 family
The lethal-7 (let-7) gene was first discovered in the nematode as a key developmental regulator and became one of the first two known microRNAs (the other one is lin-4).[5] Soon, let-7 was found in fruit fly, and identified as the first known human miRNA by a BLAST (basic local alignment search tool) research.[6] The mature form of let-7 family members is highly conserved across species.
In C.elegans
In C.elegans, the let-7 family consists of genes encoding nine miRNAs sharing the same seed sequence.[7] Among them, let-7, mir-84, mir-48 and mir-241 are involved in C.elegans heterochronic pathway, sequentially controlling developmental timing of larva transitions.[8] Most animals with loss-of-function let-7 mutation burst through their vulvas and die, and therefore the mutant is lethal (let). The mutants of other let-7 family members have a radio-resistant phenotype in vulval cells, which may be related to their ability to repress RAS.[9]
In Drosophila
There is only one single let-7 gene in the Drosophila genome, which has the identical mature sequence to the one in C.elegans.[10] The role of let-7 has been demonstrated in regulating the timing of neuromuscular junction formation in the abdomen and cell-cycle in the wing.[11] Furthermore, the expression of pri-, pre- and mature let-7 have the same rhythmic pattern with the hormone pulse before each cuticular molt in Drosophila.[12]
In vertebrates
The let-7 family has a lot more members in vertebrates than in C.elegans and Drosophila. The sequences, expression timing, as well as genomic clustering of these miRNAs members are all conserved across species.[13] The direct role of let-7 family in vertebrate development has not been clearly shown as in less complex organisms, yet the expression pattern of let-7 family is indeed temporally regulated during developmental processes.[14] Functionally, let-7 has been shown in early vertebrates to control the differentiation of mesoderm and ectoderm.[15] Given that the expression levels of let-7 members are significantly low in human cancers and cancer stem cells,[16] the major function of let-7 genes may be to promote terminal differentiation in development and tumor suppression.
Regulation of expression
Although the levels of mature let-7 members are undetectable in undifferentiated cells, the primary transcripts and the hairpin precursors of let-7 are present in these cells.[17] It indicates that the mature let-7 miRNAs may be regulated in a post-transcriptional manner.
By pluripotency promoting factor LIN28
As one of the genes involved in (but not essential for) induced pluripotent stem (iPS) cell reprogramming,[18] LIN28 expression is reciprocal to that of mature let-7.[19] LIN28 selectively binds the primary and precursor forms of let-7, and inhibits the processing of pri-let-7 to form the hairpin precursor.[20] This binding is facilitated by the conserved loop sequence of primary let-7 family members and RNA-binding domains of LIN28 proteins.[21] Lin-28 uses two zinc knuckle domains to recognize the NGNNG motif in the let-7 precursors,[22] while the Cold-shock domain, connected by a flexible linker, binds to a closed loop in the precursors.[23] On the other hand, let-7 miRNAs in mammals have been shown to regulate LIN28,[24] which implies that let-7 might enhance its own level by repressing LIN28, its negative regulator.[25]
In autoregulatory loop with MYC
Expression of let-7 members is controlled by MYC binding to their promoters. The levels of let-7 have been reported to decrease in models of MYC-mediated tumorigenesis, and to increase when MYC is inhibited by chemicals.[26] In a twist, there are let-7-binding sites in MYC 3' untranslated region(UTR) according to bioinformatic analysis, and let-7 overexpression in cell culture decreased MYC mRNA levels.[27] Therefore, there is a double-negative feedback loop between MYC and let-7. Furthermore, let-7 could lead to IMP1(/insulin-like growth factor II mRNA-binding protein) depletion, which destabilizes MYC mRNA, thus forming an indirect regulatory pathway.[28]
Targets of let-7
Oncogenes: RAS, HMGA2
Let-7 has been demonstrated to be a direct regulator of RAS expression in human cells[29] All the three RAS genes in human, K-, N-, and H-, have the predicted let-7 binding sequences in their 3'UTRs. In lung cancer patient samples, expression of RAS and let-7 showed reciprocal pattern, which has low let-7 and high RAS in cancerous cells, and high let-7 and low RAS in normal cells. Another oncogene, high mobility group A2 (HMGA2), has also been identified as a target of let-7. Let-7 directly inhibits HMGA2 by binding to its 3'UTR.[30] Removal of let-7 binding site by 3'UTR deletion cause overexpression of HMGA2 and formation of tumor.
Cell cycle, proliferation, and apoptosis regulators
Microarray analyses revealed many genes regulating cell cycle and cell proliferation that are responsive to alteration of let-7 levels, including cyclin A2, CDC34, Aurora A and B kinases (STK6 and STK12), E2F5, and CDK8, among others.[29] Subsequent experiments confirmed the direct effects of some of these genes, such as CDC25A and CDK6.[31] Let-7 also inhibits several components of DNA replication machinery, transcription factors, even some tumor suppressor genes and checkpoint regulators.[29] Apoptosis is regulated by let-7 as well, through Casp3, Bcl2, Map3k1 and Cdk5 modulation.[32]
Immunity
Let-7 has been implicated in post-transcriptional control of innate immune responses to pathogenic agents. Macrophages stimulated with live bacteria or purified microbial components down-regulate the expression of several members of the let-7 microRNA family to relieve repression of immune-modulatory cytokines IL-6 and IL-10.[33] [34] Let-7 has also been implicated in the negative regulation of TLR4, the major immune receptor of microbial lipopolysaccharide and down-regulation of let-7 both upon microbial and protozoan infection might elevate TLR4 signalling and expression.[35] [36] Let-7 has furthermore been reported to regulate the production of cytokine IL-13 by T lymphocytes during allergic airway inflammation thus linking this microRNA to adaptive immunity as well.[37] Down-modulation of let-7 negative regulator Lin28b in human T lymphocytes is believed to accrue during early neonate development to reprogram the immune system towards defense.[38]
Potential clinical use in cancer
Given the prominent phenotype of cell overproliferation and undifferentiation by let-7 loss-of-function in nematodes, and the role of its targets on cell destiny determination, let-7 is closely associated with human cancer and acts as a tumor suppressor.
Diagnosis
Numerous reports have shown that the expression levels of let-7 are frequently low and the chromosomal clusters of let-7 are often deleted in many cancers. Let-7 is expressed at higher levels in more differentiated tumors, which also have lower levels of activated oncogenes such as RAS and HMGA2. Therefore, expression levels of let-7 could be prognostic markers in several cancers associated with differentiation stages.[39] In lung cancer, for example, reduced expression of let-7 is significantly correlated with reduced postoperative survival.[40] The expression of let-7b and let-7g microRNAs are significantly associated with overall survival in 1262 breast cancer patients.[41]
Therapy
Let-7 is also a very attractive potential therapeutic that can prevent tumorigenesis and angiogenesis, typically in cancers that underexpress let-7.[42] Lung cancer, for instance, has several key oncogenic mutations including p53, RAS and MYC, some of which may directly correlate with the reduced expression of let-7, and may be repressed by introduction of let-7. Intranasal administration of let-7 has already been found effective in reducing tumor growth in a transgenic mouse model of lung cancer.[43] Similar restoration of let-7 was also shown to inhibit cell proliferation in breast, colon and hepatic cancers, lymphoma, and uterine leiomyoma.[44]
Further reading
- Dangi-Garimella S, Strouch MJ, Grippo PJ, Bentrem DJ, Munshi HG . Collagen regulation of let-7 in pancreatic cancer involves TGF-β1-mediated membrane type 1-matrix metalloproteinase expression . Oncogene . 30 . 8 . 1002–1008 . February 2011 . 21057545 . 3172057 . 10.1038/onc.2010.485 .
- Yang X, Lin X, Zhong X, Kaur S, Li N, Liang S, Lassus H, Wang L, Katsaros D, Montone K, Zhao X, Zhang Y, Bützow R, Coukos G, Zhang L . 6 . Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells . Cancer Research . 70 . 22 . 9463–9472 . November 2010 . 21045151 . 3057570 . 10.1158/0008-5472.CAN-10-2388 .
- Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K, Mochizuki T . 6 . Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line . PLOS ONE . 5 . 10 . e13247 . October 2010 . 20949044 . 2951912 . 10.1371/journal.pone.0013247 . Wölfl S . free . 2010PLoSO...513247O .
- Ramachandran R, Fausett BV, Goldman D . Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway . Nature Cell Biology . 12 . 11 . 1101–1107 . November 2010 . 20935637 . 2972404 . 10.1038/ncb2115 .
- Ruzzo A, Canestrari E, Galluccio N, Santini D, Vincenzi B, Tonini G, Magnani M, Graziano F . 6 . Role of KRAS let-7 LCS6 SNP in metastatic colorectal cancer patients . Annals of Oncology . 22 . 1 . 234–235 . January 2011 . 20926546 . 10.1093/annonc/mdq472 . free .
- Garbuzov A, Tatar M . Hormonal regulation of Drosophila microRNA let-7 and miR-125 that target innate immunity . Fly . 4 . 4 . 306–311 . 2010 . 20798594 . 3174482 . 10.4161/fly.4.4.13008 .
- Ji J, Wang XW . A Yin-Yang balancing act of the lin28/let-7 link in tumorigenesis . Journal of Hepatology . 53 . 5 . 974–975 . November 2010 . 20739081 . 2949515 . 10.1016/j.jhep.2010.07.001 .
- Osada H, Takahashi T . let-7 and miR-17-92: small-sized major players in lung cancer development . Cancer Science . 102 . 1 . 9–17 . January 2011 . 20735434 . 10.1111/j.1349-7006.2010.01707.x . free .
- He Y, Yang C, Kirkmire CM, Wang ZJ . Regulation of opioid tolerance by let-7 family microRNA targeting the mu opioid receptor . The Journal of Neuroscience . 30 . 30 . 10251–10258 . July 2010 . 20668208 . 2943348 . 10.1523/JNEUROSCI.2419-10.2010 .
- Cevec M, Thibaudeau C, Plavec J . NMR structure of the let-7 miRNA interacting with the site LCS1 of lin-41 mRNA from Caenorhabditis elegans . Nucleic Acids Research . 38 . 21 . 7814–7821 . November 2010 . 20660479 . 2995062 . 10.1093/nar/gkq640 .
- Nie K, Zhang T, Allawi H, Gomez M, Liu Y, Chadburn A, Wang YL, Knowles DM, Tam W . 6 . Epigenetic down-regulation of the tumor suppressor gene PRDM1/Blimp-1 in diffuse large B cell lymphomas: a potential role of the microRNA let-7 . The American Journal of Pathology . 177 . 3 . 1470–1479 . September 2010 . 20651244 . 2928978 . 10.2353/ajpath.2010.091291 .
- Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, Shaw C, Benham AL, Kim J, Soibam B, Harris RA, Coarfa C, Zariff A, Milosavljevic A, Batts LM, Kheradmand F, Gunaratne PH, Corry DB . 6 . Proinflammatory role for let-7 microRNAS in experimental asthma . The Journal of Biological Chemistry . 285 . 39 . 30139–30149 . September 2010 . 20630862 . 2943272 . 10.1074/jbc.M110.145698 . free .
- Newman MA, Hammond SM . Lin-28: an early embryonic sentinel that blocks Let-7 biogenesis . The International Journal of Biochemistry & Cell Biology . 42 . 8 . 1330–1333 . August 2010 . 20619222 . 10.1016/j.biocel.2009.02.023 .
- Lee ST, Chu K, Oh HJ, Im WS, Lim JY, Kim SK, Park CK, Jung KH, Lee SK, Kim M, Roh JK . 6 . Let-7 microRNA inhibits the proliferation of human glioblastoma cells . Journal of Neuro-Oncology . 102 . 1 . 19–24 . March 2011 . 20607356 . 10.1007/s11060-010-0286-6 . 29835621 .
- Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M, Lurje G, LaBonte MJ, Wilson PM, Gordon MA, Hu-Lieskovan S, Mauro DJ, Langer C, Rowinsky EK, Lenz HJ . 6 . A let-7 microRNA-binding site polymorphism in 3'-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy . Annals of Oncology . 22 . 1 . 104–109 . January 2011 . 20603437 . 8890483 . 10.1093/annonc/mdq315 . free .
- Zhao Y, Deng C, Wang J, Xiao J, Gatalica Z, Recker RR, Xiao GG . Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer . Breast Cancer Research and Treatment . 127 . 1 . 69–80 . May 2011 . 20535543 . 10.1007/s10549-010-0972-2 . 29668405 .
- Hu G, Zhou R, Liu J, Gong AY, Chen XM . MicroRNA-98 and let-7 regulate expression of suppressor of cytokine signaling 4 in biliary epithelial cells in response to Cryptosporidium parvum infection . The Journal of Infectious Diseases . 202 . 1 . 125–135 . July 2010 . 20486857 . 2880649 . 10.1086/653212 .
- Steinemann D, Tauscher M, Praulich I, Niemeyer CM, Flotho C, Schlegelberger B . Mutations in the let-7 binding site - a mechanism of RAS activation in juvenile myelomonocytic leukemia? . Haematologica . 95 . 9 . 1616 . September 2010 . 20460640 . 2930968 . 10.3324/haematol.2010.024984 .
- Wong TS, Man OY, Tsang CM, Tsao SW, Tsang RK, Chan JY, Ho WK, Wei WI, To VS . 6 . MicroRNA let-7 suppresses nasopharyngeal carcinoma cells proliferation through downregulating c-Myc expression . Journal of Cancer Research and Clinical Oncology . 137 . 3 . 415–422 . March 2011 . 20440510 . 3036828 . 10.1007/s00432-010-0898-4 .
- Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N . 6 . The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma . Journal of Hepatology . 52 . 5 . 698–704 . May 2010 . 20347499 . 10.1016/j.jhep.2009.12.024 .
- Jakymiw A, Patel RS, Deming N, Bhattacharyya I, Shah P, Lamont RJ, Stewart CM, Cohen DM, Chan EK . 6 . Overexpression of dicer as a result of reduced let-7 MicroRNA levels contributes to increased cell proliferation of oral cancer cells . Genes, Chromosomes & Cancer . 49 . 6 . 549–559 . June 2010 . 20232482 . 2859695 . 10.1002/gcc.20765 .
- Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, Kiang LS, Tanavde V . Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha . BMC Genomics . 11 . Suppl 1 . S6 . February 2010 . 20158877 . 2822534 . 10.1186/1471-2164-11-S1-S6 . free .
- Balzer E, Heine C, Jiang Q, Lee VM, Moss EG . LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro . Development . 137 . 6 . 891–900 . March 2010 . 20179095 . 10.1242/dev.042895 . free .
- Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D, Rocchi M, Vincenzi B, Salvatore L, Cremolini C, Spoto C, Catalano V, D'Emidio S, Giordani P, Tonini G, Falcone A, Magnani M . 6 . Genetic modulation of the Let-7 microRNA binding to KRAS 3'-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan . The Pharmacogenomics Journal . 10 . 5 . 458–464 . October 2010 . 20177422 . 10.1038/tpj.2010.9 . free .
- Klemke M, Meyer A, Hashemi Nezhad M, Belge G, Bartnitzke S, Bullerdiek J . Loss of let-7 binding sites resulting from truncations of the 3' untranslated region of HMGA2 mRNA in uterine leiomyomas . Cancer Genetics and Cytogenetics . 196 . 2 . 119–123 . January 2010 . 20082846 . 10.1016/j.cancergencyto.2009.09.021 .
- Oh JS, Kim JJ, Byun JY, Kim IA . Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras . International Journal of Radiation Oncology, Biology, Physics . 76 . 1 . 5–8 . January 2010 . 20005451 . 10.1016/j.ijrobp.2009.08.028 .
- Mu G, Liu H, Zhou F, Xu X, Jiang H, Wang Y, Qu Y . Correlation of overexpression of HMGA1 and HMGA2 with poor tumor differentiation, invasion, and proliferation associated with let-7 down-regulation in retinoblastomas . Human Pathology . 41 . 4 . 493–502 . April 2010 . 20004941 . 10.1016/j.humpath.2009.08.022 .
- Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, Homer R, Brown D, Bader AG, Weidhaas JB, Slack FJ . 6 . Regression of murine lung tumors by the let-7 microRNA . Oncogene . 29 . 11 . 1580–1587 . March 2010 . 19966857 . 2841713 . 10.1038/onc.2009.445 .
- Ricarte-Filho JC, Fuziwara CS, Yamashita AS, Rezende E, da-Silva MJ, Kimura ET . Effects of let-7 microRNA on Cell Growth and Differentiation of Papillary Thyroid Cancer . Translational Oncology . 2 . 4 . 236–241 . December 2009 . 19956384 . 2781070 . 10.1593/tlo.09151 .
- Noh SJ, Miller SH, Lee YT, Goh SH, Marincola FM, Stroncek DF, Reed C, Wang E, Miller JL . 6 . Let-7 microRNAs are developmentally regulated in circulating human erythroid cells . Journal of Translational Medicine . 7 . 98 . November 2009 . 19939273 . 2792219 . 10.1186/1479-5876-7-98 . free .
- Rybak A, Fuchs H, Hadian K, Smirnova L, Wulczyn EA, Michel G, Nitsch R, Krappmann D, Wulczyn FG . 6 . The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2 . Nature Cell Biology . 11 . 12 . 1411–1420 . December 2009 . 19898466 . 10.1038/ncb1987 . 10902783 .
- Iliopoulos D, Hirsch HA, Struhl K . An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation . Cell . 139 . 4 . 693–706 . November 2009 . 19878981 . 2783826 . 10.1016/j.cell.2009.10.014 .
- Hammell CM, Karp X, Ambros V . A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans . Proceedings of the National Academy of Sciences of the United States of America . 106 . 44 . 18668–18673 . November 2009 . 19828440 . 2774035 . 10.1073/pnas.0908131106 . free . 2009PNAS..10618668H .
- Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME . The role of let-7 in cell differentiation and cancer . Endocrine-Related Cancer . 17 . 1 . F19–F36 . March 2010 . 19779035 . 10.1677/ERC-09-0184 . free .
- Hagan JP, Piskounova E, Gregory RI . Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells . Nature Structural & Molecular Biology . 16 . 10 . 1021–1025 . October 2009 . 19713958 . 2758923 . 10.1038/nsmb.1676 .
- Lehrbach NJ, Armisen J, Lightfoot HL, Murfitt KJ, Bugaut A, Balasubramanian S, Miska EA . LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans . Nature Structural & Molecular Biology . 16 . 10 . 1016–1020 . October 2009 . 19713957 . 2988485 . 10.1038/nsmb.1675 .
- Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH . Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells . Cancer Research . 69 . 16 . 6704–6712 . August 2009 . 19654291 . 2727571 . 10.1158/0008-5472.CAN-09-1298 .
- Roush SF, Slack FJ . Transcription of the C. elegans let-7 microRNA is temporally regulated by one of its targets, hbl-1 . Developmental Biology . 334 . 2 . 523–534 . October 2009 . 19627983 . 2753757 . 10.1016/j.ydbio.2009.07.012 .
- Chan SP, Slack FJ . Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans . Developmental Biology . 334 . 1 . 152–160 . October 2009 . 19627982 . 2753218 . 10.1016/j.ydbio.2009.07.011 .
- Shi G, Perle MA, Mittal K, Chen H, Zou X, Narita M, Hernando E, Lee P, Wei JJ . 6 . Let-7 repression leads to HMGA2 overexpression in uterine leiomyosarcoma . Journal of Cellular and Molecular Medicine . 13 . 9B . 3898–3905 . September 2009 . 19602040 . 4516537 . 10.1111/j.1582-4934.2008.00541.x .
- Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M . HuR recruits let-7/RISC to repress c-Myc expression . Genes & Development . 23 . 15 . 1743–1748 . August 2009 . 19574298 . 2720259 . 10.1101/gad.1812509 .
- Wang X, Hulshizer RL, Erickson-Johnson MR, Flynn HC, Jenkins RB, Lloyd RV, Oliveira AM . Identification of novel HMGA2 fusion sequences in lipoma: evidence that deletion of let-7 miRNA consensus binding site 1 in the HMGA2 3' UTR is not critical for HMGA2 transcriptional upregulation . Genes, Chromosomes & Cancer . 48 . 8 . 673–678 . August 2009 . 19431195 . 10.1002/gcc.20674 . 5328884 .
- Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, Marsit CJ, Kelsey KT . 6 . A let-7 microRNA-binding site polymorphism in the KRAS 3' UTR is associated with reduced survival in oral cancers . Carcinogenesis . 30 . 6 . 1003–1007 . June 2009 . 19380522 . 2691138 . 10.1093/carcin/bgp099 .
- Slack F . let-7 microRNA reduces tumor growth . Cell Cycle . 8 . 12 . 1823 . June 2009 . 19377282 . 10.4161/cc.8.12.8639 . free .
- Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ . MicroRNA let-7 regulates 3T3-L1 adipogenesis . Molecular Endocrinology . 23 . 6 . 925–931 . June 2009 . 19324969 . 2691679 . 10.1210/me.2008-0298 .
- Torrisani J, Bournet B, du Rieu MC, Bouisson M, Souque A, Escourrou J, Buscail L, Cordelier P . 6 . let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression . Human Gene Therapy . 20 . 8 . 831–844 . August 2009 . 19323605 . 10.1089/hum.2008.134 .
- Peter ME . Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression . Cell Cycle . 8 . 6 . 843–852 . March 2009 . 19221491 . 2688687 . 10.4161/cc.8.6.7907 .
- Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA, Thomas-Tikhonenko A, Mendell JT . 6 . Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation . Proceedings of the National Academy of Sciences of the United States of America . 106 . 9 . 3384–3389 . March 2009 . 19211792 . 2651245 . 10.1073/pnas.0808300106 . free . 2009PNAS..106.3384C .
- Rahman MM, Qian ZR, Wang EL, Sultana R, Kudo E, Nakasono M, Hayashi T, Kakiuchi S, Sano T . 6 . Frequent overexpression of HMGA1 and 2 in gastroenteropancreatic neuroendocrine tumours and its relationship to let-7 downregulation . British Journal of Cancer . 100 . 3 . 501–510 . February 2009 . 19156147 . 2658538 . 10.1038/sj.bjc.6604883 .
- Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ, Rosner MR . 6 . Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7 . The EMBO Journal . 28 . 4 . 347–358 . February 2009 . 19153603 . 2646152 . 10.1038/emboj.2008.294 .
- Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M, Kudo E, Sano T . 6 . Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas . Modern Pathology . 22 . 3 . 431–441 . March 2009 . 19136928 . 10.1038/modpathol.2008.202 . free .
- Legesse-Miller A, Elemento O, Pfau SJ, Forman JJ, Tavazoie S, Coller HA . let-7 Overexpression leads to an increased fraction of cells in G2/M, direct down-regulation of Cdc34, and stabilization of Wee1 kinase in primary fibroblasts . The Journal of Biological Chemistry . 284 . 11 . 6605–6609 . March 2009 . 19126550 . 2652271 . 10.1074/jbc.C900002200 . free .
- Maller Schulman BR, Liang X, Stahlhut C, DelConte C, Stefani G, Slack FJ . The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure . Cell Cycle . 7 . 24 . 3935–3942 . December 2008 . 19098426 . 2895810 . 10.4161/cc.7.24.7397 .
- Heo I, Joo C, Cho J, Ha M, Han J, Kim VN . Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA . Molecular Cell . 32 . 2 . 276–284 . October 2008 . 18951094 . 10.1016/j.molcel.2008.09.014 . free .
- Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA, Crowell RE, Patel R, Kulkarni T, Homer R, Zelterman D, Kidd KK, Zhu Y, Christiani DC, Belinsky SA, Slack FJ, Weidhaas JB . 6 . A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk . Cancer Research . 68 . 20 . 8535–8540 . October 2008 . 18922928 . 2672193 . 10.1158/0008-5472.CAN-08-2129 .
- Andachi Y . A novel biochemical method to identify target genes of individual microRNAs: identification of a new Caenorhabditis elegans let-7 target . RNA . 14 . 11 . 2440–2451 . November 2008 . 18824511 . 2578851 . 10.1261/rna.1139508 .
- Ding XC, Slack FJ, Grosshans H . The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation . Cell Cycle . 7 . 19 . 3083–3090 . October 2008 . 18818519 . 2887667 . 10.4161/cc.7.19.6778 .
- Forman JJ, Legesse-Miller A, Coller HA . A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence . Proceedings of the National Academy of Sciences of the United States of America . 105 . 39 . 14879–14884 . September 2008 . 18812516 . 2567461 . 10.1073/pnas.0803230105 . free . 2008PNAS..10514879F .
- Roush S, Slack FJ . The let-7 family of microRNAs . Trends in Cell Biology . 18 . 10 . 505–516 . October 2008 . 18774294 . 10.1016/j.tcb.2008.07.007 .
- Tennessen JM, Thummel CS . Developmental timing: let-7 function conserved through evolution . Current Biology . 18 . 16 . R707–R708 . August 2008 . 18727906 . 2583239 . 10.1016/j.cub.2008.07.013 .
- Chan SP, Ramaswamy G, Choi EY, Slack FJ . Identification of specific let-7 microRNA binding complexes in Caenorhabditis elegans . RNA . 14 . 10 . 2104–2114 . October 2008 . 18719242 . 2553747 . 10.1261/rna.551208 .
- Tokumaru S, Suzuki M, Yamada H, Nagino M, Takahashi T . let-7 regulates Dicer expression and constitutes a negative feedback loop . Carcinogenesis . 29 . 11 . 2073–2077 . November 2008 . 18700235 . 10.1093/carcin/bgn187 . free .
- Büssing I, Slack FJ, Grosshans H . let-7 microRNAs in development, stem cells and cancer . Trends in Molecular Medicine . 14 . 9 . 400–409 . September 2008 . 18674967 . 10.1016/j.molmed.2008.07.001 .
- Jérôme T, Laurie P, Louis B, Pierre C . Enjoy the Silence: The Story of let-7 MicroRNA and Cancer . Current Genomics . 8 . 4 . 229–233 . June 2007 . 18645597 . 2430685 . 10.2174/138920207781386933 .
- Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, Weiss MK, Naghavi AO, Khan M, Zhu H, Tennakoon J, Gunaratne GH, Corry DB, Miller J, McManus MT, German MS, Gibbs RA, Matzuk MM, Gunaratne PH . 6 . Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/ cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes . Genome Research . 18 . 10 . 1571–1581 . October 2008 . 18614752 . 2556275 . 10.1101/gr.078246.108 .
- Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG . A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment . Nature Cell Biology . 10 . 8 . 987–993 . August 2008 . 18604195 . 10.1038/ncb1759 . 12188484 .
- Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC . A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication . Molecular Therapy . 16 . 8 . 1437–1443 . August 2008 . 18560417 . 10.1038/mt.2008.130 . free . free . 10393/12831 .
- Sokol NS, Xu P, Jan YN, Ambros V . Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis . Genes & Development . 22 . 12 . 1591–1596 . June 2008 . 18559475 . 2428057 . 10.1101/gad.1671708 .
- Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M . Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family . Clinical Cancer Research . 14 . 8 . 2334–2340 . April 2008 . 18413822 . 10.1158/1078-0432.CCR-07-4667 . free .
- Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS, Feig C, Xu J, Burge CB, Peter ME . 6 . Identification of let-7-regulated oncofetal genes . Cancer Research . 68 . 8 . 2587–2591 . April 2008 . 18413726 . 10.1158/0008-5472.CAN-08-0264 . free .
- Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, Wei JJ . Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma . Molecular Cancer Research . 6 . 4 . 663–673 . April 2008 . 18403645 . 10.1158/1541-7786.MCR-07-0370 . free .
- Garfield D . let-7 microRNA expression and the distinction between nonmucinous and mucinous bronchioloalveolar carcinomas . Lung Cancer . 60 . 2 . 307 . May 2008 . 18395292 . 10.1016/j.lungcan.2008.02.010 .
- Dröge P, Davey CA . Do cells let-7 determine stemness? . Cell Stem Cell . 2 . 1 . 8–9 . January 2008 . 18371414 . 10.1016/j.stem.2007.12.003 . free .
- Solomon A, Mian Y, Ortega-Cava C, Liu VW, Gurumurthy CB, Naramura M, Band V, Band H . 6 . Upregulation of the let-7 microRNA with precocious development in lin-12/Notch hypermorphic Caenorhabditis elegans mutants . Developmental Biology . 316 . 2 . 191–199 . April 2008 . 18334253 . 2390880 . 10.1016/j.ydbio.2007.12.046 .
- Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T . Suppression of non-small cell lung tumor development by the let-7 microRNA family . Proceedings of the National Academy of Sciences of the United States of America . 105 . 10 . 3903–3908 . March 2008 . 18308936 . 2268826 . 10.1073/pnas.0712321105 . free . 2008PNAS..105.3903K .
- Cevec M, Thibaudeau C, Plavec J . Solution structure of a let-7 miRNA:lin-41 mRNA complex from C. elegans . Nucleic Acids Research . 36 . 7 . 2330–2337 . April 2008 . 18296482 . 2367737 . 10.1093/nar/gkn088 .
- Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E . 6 . let-7 regulates self renewal and tumorigenicity of breast cancer cells . Cell . 131 . 6 . 1109–1123 . December 2007 . 18083101 . 10.1016/j.cell.2007.10.054 . free .
- O'Farrell F, Esfahani SS, Engström Y, Kylsten P . Regulation of the Drosophila lin-41 homologue dappled by let-7 reveals conservation of a regulatory mechanism within the LIN-41 subclade . Developmental Dynamics . 237 . 1 . 196–208 . January 2008 . 18069688 . 10.1002/dvdy.21396 . free .
- Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B, Dinulescu DM, Lengyel E, Peter ME . 6 . Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2 . Cell Cycle . 6 . 21 . 2585–2590 . November 2007 . 17957144 . 10.4161/cc.6.21.4845 . free .
- Lin YC, Hsieh LC, Kuo MW, Yu J, Kuo HH, Lo WL, Lin RJ, Yu AL, Li WH . 6 . Human TRIM71 and its nematode homologue are targets of let-7 microRNA and its zebrafish orthologue is essential for development . Molecular Biology and Evolution . 24 . 11 . 2525–2534 . November 2007 . 17890240 . 10.1093/molbev/msm195 . free .
- Tsonis PA, Call MK, Grogg MW, Sartor MA, Taylor RR, Forge A, Fyffe R, Goldenberg R, Cowper-Sal-lari R, Tomlinson CR . 6 . MicroRNAs and regeneration: Let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt . Biochemical and Biophysical Research Communications . 362 . 4 . 940–945 . November 2007 . 17765873 . 2683343 . 10.1016/j.bbrc.2007.08.077 .
- Inamura K, Togashi Y, Nomura K, Ninomiya H, Hiramatsu M, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y . 6 . let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis . Lung Cancer . 58 . 3 . 392–396 . December 2007 . 17728006 . 10.1016/j.lungcan.2007.07.013 .
- Salzman DW, Shubert-Coleman J, Furneaux H . P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7-directed silencing of gene expression . The Journal of Biological Chemistry . 282 . 45 . 32773–32779 . November 2007 . 17724023 . 10.1074/jbc.M705054200 . free .
- Wakiyama M, Takimoto K, Ohara O, Yokoyama S . Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system . Genes & Development . 21 . 15 . 1857–1862 . August 2007 . 17671087 . 1935024 . 10.1101/gad.1566707 .
- Liu S, Xia Q, Zhao P, Cheng T, Hong K, Xiang Z . Characterization and expression patterns of let-7 microRNA in the silkworm (Bombyx mori) . BMC Developmental Biology . 7 . 88 . July 2007 . 17651473 . 1976426 . 10.1186/1471-213X-7-88 . free .
- Lee YS, Dutta A . The tumor suppressor microRNA let-7 represses the HMGA2 oncogene . Genes & Development . 21 . 9 . 1025–1030 . May 2007 . 17437991 . 1855228 . 10.1101/gad.1540407 .
- Nolde MJ, Saka N, Reinert KL, Slack FJ . The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3'UTR-mediated repression of the let-7 microRNA target gene, hbl-1 . Developmental Biology . 305 . 2 . 551–563 . May 2007 . 17412319 . 2096746 . 10.1016/j.ydbio.2007.02.040 .
- Hayes GD, Ruvkun G . Misexpression of the Caenorhabditis elegans miRNA let-7 is sufficient to drive developmental programs . Cold Spring Harbor Symposia on Quantitative Biology . 71 . 21–27 . 2006 . 17381276 . 10.1101/sqb.2006.71.018 . free .
- Hayes GD, Frand AR, Ruvkun G . The mir-84 and let-7 paralogous microRNA genes of Caenorhabditis elegans direct the cessation of molting via the conserved nuclear hormone receptors NHR-23 and NHR-25 . Development . 133 . 23 . 4631–4641 . December 2006 . 17065234 . 10.1242/dev.02655 . free .
- Akao Y, Nakagawa Y, Naoe T . let-7 microRNA functions as a potential growth suppressor in human colon cancer cells . Biological & Pharmaceutical Bulletin . 29 . 5 . 903–906 . May 2006 . 16651716 . 10.1248/bpb.29.903 . free .
- Schulman BR, Esquela-Kerscher A, Slack FJ . Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis . Developmental Dynamics . 234 . 4 . 1046–1054 . December 2005 . 16247770 . 2596717 . 10.1002/dvdy.20599 .
- Esquela-Kerscher A, Johnson SM, Bai L, Saito K, Partridge J, Reinert KL, Slack FJ . Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system . Developmental Dynamics . 234 . 4 . 868–877 . December 2005 . 16217741 . 2572564 . 10.1002/dvdy.20572 .
- Li M, Jones-Rhoades MW, Lau NC, Bartel DP, Rougvie AE . Regulatory mutations of mir-48, a C. elegans let-7 family MicroRNA, cause developmental timing defects . Developmental Cell . 9 . 3 . 415–422 . September 2005 . 16139229 . 10.1016/j.devcel.2005.08.002 . free .
- Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V . The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans . Developmental Cell . 9 . 3 . 403–414 . September 2005 . 16139228 . 3969732 . 10.1016/j.devcel.2005.07.009 .
- Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE . Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation . Cell . 122 . 4 . 553–563 . August 2005 . 16122423 . 10.1016/j.cell.2005.07.031 . free .
- Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W . 6 . Inhibition of translational initiation by Let-7 MicroRNA in human cells . Science . 309 . 5740 . 1573–1576 . September 2005 . 16081698 . 10.1126/science.1115079 . 42472697 . 2005Sci...309.1573P .
- Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ . The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans . Developmental Cell . 8 . 3 . 321–330 . March 2005 . 15737928 . 10.1016/j.devcel.2004.12.019 . free .
- Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH . Substrate requirements for let-7 function in the developing zebrafish embryo . Nucleic Acids Research . 32 . 21 . 6284–6291 . 2004 . 15585662 . 535676 . 10.1093/nar/gkh968 .
- Bracht J, Hunter S, Eachus R, Weeks P, Pasquinelli AE . Trans-splicing and polyadenylation of let-7 microRNA primary transcripts . RNA . 10 . 10 . 1586–1594 . October 2004 . 15337850 . 1370645 . 10.1261/rna.7122604 .
- Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ . The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR . Genes & Development . 18 . 2 . 132–137 . January 2004 . 14729570 . 324419 . 10.1101/gad.1165404 .
- Basyuk E, Suavet F, Doglio A, Bordonné R, Bertrand E . Human let-7 stem-loop precursors harbor features of RNase III cleavage products . Nucleic Acids Research . 31 . 22 . 6593–6597 . November 2003 . 14602919 . 275551 . 10.1093/nar/gkg855 .
- Johnson SM, Lin SY, Slack FJ . The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter . Developmental Biology . 259 . 2 . 364–379 . July 2003 . 12871707 . 10.1016/S0012-1606(03)00202-1 . free .
- Pasquinelli AE, McCoy A, Jiménez E, Saló E, Ruvkun G, Martindale MQ, Baguñà J . Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? . Evolution & Development . 5 . 4 . 372–378 . 2003 . 12823453 . 10.1046/j.1525-142X.2003.03044.x . 32723915 .
- Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V . The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster . Developmental Biology . 244 . 1 . 170–179 . April 2002 . 11900466 . 10.1006/dbio.2002.0594 . free .
- Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD . A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA . Science . 293 . 5531 . 834–838 . August 2001 . 11452083 . 10.1126/science.1062961 . 6177608 . free .
- Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G . The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor . Molecular Cell . 5 . 4 . 659–669 . April 2000 . 10882102 . 10.1016/S1097-2765(00)80245-2 . free .
- Lin S, Li H, Mu H, Luo W, Li Y, Jia X, Wang S, Jia X, Nie Q, Li Y, Zhang X . 6 . Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens . BMC Genomics . 13 . 306 . July 2012 . 22781587 . 3428657 . 10.1186/1471-2164-13-306 . free .
- Shen Y, Wollam J, Magner D, Karalay O, Antebi A . A steroid receptor-microRNA switch regulates life span in response to signals from the gonad . Science . 338 . 6113 . 1472–1476 . December 2012 . 23239738 . 3909774 . 10.1126/science.1228967 . 2012Sci...338.1472S .
External links
Notes and References
- Rougvie AE . Control of developmental timing in animals . Nature Reviews. Genetics . 2 . 9 . 690–701 . September 2001 . 11533718 . 10.1038/35088566 . 44335211 .
- Ambros V . microRNAs: tiny regulators with great potential . Cell . 107 . 7 . 823–826 . December 2001 . 11779458 . 10.1016/S0092-8674(01)00616-X . free .
- http://mirbase.org/cgi-bin/mirna_summary.pl?fam=MIPF0000002 MIPF0000002
- Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM . 6 . Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers . Proceedings of the National Academy of Sciences of the United States of America . 101 . 9 . 2999–3004 . March 2004 . 14973191 . 365734 . 10.1073/pnas.0307323101 . free . 2004PNAS..101.2999C .
- Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G . 6 . The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature . 403 . 6772 . 901–906 . February 2000 . 10706289 . 10.1038/35002607 . 4384503 . 2000Natur.403..901R .
- Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G . 6 . Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA . Nature . 408 . 6808 . 86–89 . November 2000 . 11081512 . 10.1038/35040556 . 4401732 . 2000Natur.408...86P .
- Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP . 6 . The microRNAs of Caenorhabditis elegans . Genes & Development . 17 . 8 . 991–1008 . April 2003 . 12672692 . 196042 . 10.1101/gad.1074403 .
- Moss EG . Heterochronic genes and the nature of developmental time . Current Biology . 17 . 11 . R425–R434 . June 2007 . 17550772 . 10.1016/j.cub.2007.03.043 . free .
- Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ . 6 . MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy . Cancer Research . 67 . 23 . 11111–11116 . December 2007 . 18056433 . 6070379 . 10.1158/0008-5472.CAN-07-2858 . free .
- Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs . Science . 294 . 5543 . 853–858 . October 2001 . 11679670 . 10.1126/science.1064921 . free . 18101169 . 2001Sci...294..853L . 11858/00-001M-0000-0012-F65F-2 .
- Caygill EE, Johnston LA . Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs . Current Biology . 18 . 13 . 943–950 . July 2008 . 18571409 . 2736146 . 10.1016/j.cub.2008.06.020 .
- Thummel CS . Molecular mechanisms of developmental timing in C. elegans and Drosophila . Developmental Cell . 1 . 4 . 453–465 . October 2001 . 11703937 . 10.1016/S1534-5807(01)00060-0 . free .
- Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . Identification of mammalian microRNA host genes and transcription units . Genome Research . 14 . 10A . 1902–1910 . October 2004 . 15364901 . 524413 . 10.1101/gr.2722704 .
- Kloosterman WP, Plasterk RH . The diverse functions of microRNAs in animal development and disease . Developmental Cell . 11 . 4 . 441–450 . October 2006 . 17011485 . 10.1016/j.devcel.2006.09.009 . free .
- Colas AR, McKeithan WL, Cunningham TJ, Bushway PJ, Garmire LX, Duester G, Subramaniam S, Mercola M . 6 . Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis . Genes & Development . 26 . 23 . 2567–2579 . December 2012 . 23152446 . 3521625 . 10.1101/gad.200758.112 .
- Esquela-Kerscher A, Slack FJ . Oncomirs - microRNAs with a role in cancer . Nature Reviews. Cancer . 6 . 4 . 259–269 . April 2006 . 16557279 . 10.1038/nrc1840 . 10620165 .
- Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM . Extensive post-transcriptional regulation of microRNAs and its implications for cancer . Genes & Development . 20 . 16 . 2202–2207 . August 2006 . 16882971 . 1553203 . 10.1101/gad.1444406 .
- Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA . 6 . Induced pluripotent stem cell lines derived from human somatic cells . Science . 318 . 5858 . 1917–1920 . December 2007 . 18029452 . 10.1126/science.1151526 . 86129154 . 2007Sci...318.1917Y .
- Viswanathan SR, Daley GQ, Gregory RI . Selective blockade of microRNA processing by Lin28 . Science . 320 . 5872 . 97–100 . April 2008 . 18292307 . 3368499 . 10.1126/science.1154040 . 2008Sci...320...97V .
- Newman MA, Thomson JM, Hammond SM . Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing . RNA . 14 . 8 . 1539–1549 . August 2008 . 18566191 . 2491462 . 10.1261/rna.1155108 .
- Piskounova E, Viswanathan SR, Janas M, LaPierre RJ, Daley GQ, Sliz P, Gregory RI . Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28 . The Journal of Biological Chemistry . 283 . 31 . 21310–21314 . August 2008 . 18550544 . 10.1074/jbc.C800108200 . free .
- Loughlin FE, Gebert LF, Towbin H, Brunschweiger A, Hall J, Allain FH . Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28 . Nature Structural & Molecular Biology . 19 . 1 . 84–89 . December 2011 . 22157959 . 10.1038/nsmb.2202 . 2201304 .
- Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P . Molecular basis for interaction of let-7 microRNAs with Lin28 . Cell . 147 . 5 . 1080–1091 . November 2011 . 22078496 . 3277843 . 10.1016/j.cell.2011.10.020 .
- Moss EG, Tang L . Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites . Developmental Biology . 258 . 2 . 432–442 . June 2003 . 12798299 . 10.1016/S0012-1606(03)00126-X . free .
- Ali PS, Ghoshdastider U, Hoffmann J, Brutschy B, Filipek S . Recognition of the let-7g miRNA precursor by human Lin28B . FEBS Letters . 586 . 22 . 3986–3990 . November 2012 . 23063642 . 10.1016/j.febslet.2012.09.034 . 28899778 . free .
- Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT . 6 . Widespread microRNA repression by Myc contributes to tumorigenesis . Nature Genetics . 40 . 1 . 43–50 . January 2008 . 18066065 . 2628762 . 10.1038/ng.2007.30 .
- Koscianska E, Baev V, Skreka K, Oikonomaki K, Rusinov V, Tabler M, Kalantidis K . Prediction and preliminary validation of oncogene regulation by miRNAs . BMC Molecular Biology . 8 . 79 . September 2007 . 17877811 . 2096627 . 10.1186/1471-2199-8-79 . free .
- Ioannidis P, Mahaira LG, Perez SA, Gritzapis AD, Sotiropoulou PA, Kavalakis GJ, Antsaklis AI, Baxevanis CN, Papamichail M . 6 . CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells . The Journal of Biological Chemistry . 280 . 20 . 20086–20093 . May 2005 . 15769738 . 10.1074/jbc.M410036200 . free .
- Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ . 6 . RAS is regulated by the let-7 microRNA family . Cell . 120 . 5 . 635–647 . March 2005 . 15766527 . 10.1016/j.cell.2005.01.014 . free .
- Mayr C, Hemann MT, Bartel DP . Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation . Science . 315 . 5818 . 1576–1579 . March 2007 . 17322030 . 2556962 . 10.1126/science.1137999 . 2007Sci...315.1576M .
- Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D, Slack FJ . 6 . The let-7 microRNA represses cell proliferation pathways in human cells . Cancer Research . 67 . 16 . 7713–7722 . August 2007 . 17699775 . 10.1158/0008-5472.CAN-07-1083 . free .
- He YJ, Guo L, D ZH. (2009) Let-7 and mir-24 in uvb-induced apoptosis [Chinese]. Zhonghua Fang She Yi Xue Yu Fang Hu Za Zhi. 29, 234–6.
- Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J . Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family . The EMBO Journal . 30 . 10 . 1977–1989 . May 2011 . 21468030 . 3098495 . 10.1038/emboj.2011.94 .
- Liu Y, Chen Q, Song Y, Lai L, Wang J, Yu H, Cao X, Wang Q . 6 . MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation . FEBS Letters . 585 . 12 . 1963–1968 . June 2011 . 21609717 . 10.1016/j.febslet.2011.05.029 . 2416276 . free .
- Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, Dittman JW, Chen XM . MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge . Journal of Immunology . 183 . 3 . 1617–1624 . August 2009 . 19592657 . 2906382 . 10.4049/jimmunol.0804362 .
- Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, Margioris AN, Tsichlis PN, Tsatsanis C . 6 . The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs . Immunity . 31 . 2 . 220–231 . August 2009 . 19699171 . 2865583 . 10.1016/j.immuni.2009.06.024 .
- Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A, Agrawal A, Ghosh B . Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation . The Journal of Allergy and Clinical Immunology . 128 . 5 . 1077–1085 . November 2011 . 21616524 . 10.1016/j.jaci.2011.04.034 .
- Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA . Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis . Science . 335 . 6073 . 1195–1200 . March 2012 . 22345399 . 3471381 . 10.1126/science.1216557 . 2012Sci...335.1195Y .
- Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME . 6 . Let-7 expression defines two differentiation stages of cancer . Proceedings of the National Academy of Sciences of the United States of America . 104 . 27 . 11400–11405 . July 2007 . 17600087 . 2040910 . 10.1073/pnas.0704372104 . free . 2007PNAS..10411400S .
- Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T . 6 . Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival . Cancer Research . 64 . 11 . 3753–3756 . June 2004 . 15172979 . 10.1158/0008-5472.CAN-04-0637 . free .
- Lánczky A, Nagy Á, Bottai G, Munkácsy G, Szabó A, Santarpia L, Győrffy B . miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients . Breast Cancer Research and Treatment . 160 . 3 . 439–446 . December 2016 . 27744485 . 10.1007/s10549-016-4013-7 . 11165696 .
- Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S . Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis . Circulation Research . 101 . 1 . 59–68 . July 2007 . 17540974 . 10.1161/CIRCRESAHA.107.153916 . free .
- Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ . 6 . The let-7 microRNA reduces tumor growth in mouse models of lung cancer . Cell Cycle . 7 . 6 . 759–764 . March 2008 . 18344688 . 10.4161/cc.7.6.5834 . free .
- Barh D, Malhotra R, Ravi B, Sindhurani P . MicroRNA let-7: an emerging next-generation cancer therapeutic . Current Oncology . 17 . 1 . 70–80 . February 2010 . 20179807 . 2826782 . 10.3747/co.v17i1.356 .