In mathematics, a fundamental pair of periods is an ordered pair of complex numbers that defines a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined.
A fundamental pair of periods is a pair of complex numbers
\omega1,\omega2\in\Complex
\omega2/\omega1
\R2
\omega1
\omega2
Λ=\left\{m\omega1+n\omega2\midm,n\in\Z\right\}.
This lattice is also sometimes denoted as
Λ(\omega1,\omega2)
\omega1
\omega2.
\Omega\vphantom{(}
\Omega(\omega1,\omega2),
(\omega1,\omega2).
\omega1
\omega2
(0,\omega1,\omega1+\omega2,\omega2)
While a fundamental pair generates a lattice, a lattice does not have any unique fundamental pair; in fact, an infinite number of fundamental pairs correspond to the same lattice.
A number of properties, listed below, can be seen.
Two pairs of complex numbers
(\omega1,\omega2)
(\alpha1,\alpha2)
Λ(\omega1,\omega2)=Λ(\alpha1,\alpha2).
The fundamental parallelogram contains no further lattice points in its interior or boundary. Conversely, any pair of lattice points with this property constitute a fundamental pair, and furthermore, they generate the same lattice.
Two pairs
(\omega1,\omega2)
(\alpha1,\alpha2)
a,
b,
c,
d
ad-bc=\pm1
\begin{pmatrix}\alpha1\ \alpha2\end{pmatrix}= \begin{pmatrix}a&b\ c&d\end{pmatrix} \begin{pmatrix}\omega1\ \omega2\end{pmatrix},
that is, so that
\begin{align} \alpha1=a\omega1+b\omega2,\\[5mu] \alpha2=c\omega1+d\omega2. \end{align}
SL(2,\Z).
\Z2
z\in\Complex
z=p+m\omega1+n\omega2
m,n
p
Since this mapping identifies opposite sides of the parallelogram as being the same, the fundamental parallelogram has the topology of a torus. Equivalently, one says that the quotient manifold
\C/Λ
Define
\tau=\omega2/\omega1
\tau
\operatorname{PSL}(2,\Z)
\tau
The fundamental domain is given by the set
D,
U
U=\left\{z\inH:\left|z\right|>1,\left|\operatorname{Re}(z)\right|<\tfrac{1}{2}\right\}.
where
H
The fundamental domain
D
D=U\cup\left\{z\inH:\left|z\right|\geq1,\operatorname{Re}(z)=-\tfrac{1}{2}\right\}\cup\left\{z\inH:\left|z\right|=1,\operatorname{Re}(z)\le0\right\}.
Three cases pertain:
\tau\nei
\tau
(\omega1,\omega2)
(-\omega1,-\omega2).
\tau=i
(\omega1,\omega2)
(-\omega1,-\omega2)
(i\omega1,i\omega2)
(-i\omega1,-i\omega2).
(\omega1,\omega2)
(\tau\omega1,\tau\omega2)
(\tau2\omega1,\tau2\omega2)
In the closure of the fundamental domain:
\tau=i