Lanthanum manganite is an inorganic compound with the formula LaMnO3, often abbreviated as LMO. Lanthanum manganite is formed in the perovskite structure, consisting of oxygen octahedra with a central Mn atom. The cubic perovskite structure is distorted into an orthorhombic structure by a strong Jahn–Teller distortion of the oxygen octahedra.[1]
LaMnO3 often has lanthanum vacancies as evidenced by neutron scattering. For this reason, this material is usually referred as LaMnO3+ẟ. These vacancies generate a structure with a rhombohedral unit cell in this perovskite. A temperatures below 140 K, this LaMnO3+ẟ semiconductor exhibit a ferromagnetic order.[2]
Lanthanum manganite can be prepared via solid-state reactions at high temperatures, using their oxides or carbonates.[3] An alternative method is to use lanthanum nitrate and manganese nitrate as raw materials. The reaction occurs at high temperature after the solvents are vaporized.[4]
Lanthanum manganite is an electrical insulator and an A-type antiferromagnet. It is the parent compound of several important alloys, often termed rare-earth manganites or colossal magnetoresistance oxides. These families include lanthanum strontium manganite, lanthanum calcium manganite and others.
In lanthanum manganite, both the La and the Mn are in the +3 oxidation state. Substitution of some of the La atoms by divalent atoms such as Sr or Ca induces a similar amount of tetravalent Mn4+ ions. Such substitution, or doping can induce various electronic effects, which form the basis of a rich and complex electron correlation phenomena that yield diverse electronic phase diagrams in these alloys.[5]