A=(aij)
AB=BA=In
where In is the identity matrix, and
B={1\over
-1 | |
n}(a | |
ij |
)T.
where T denotes the transpose of the matrix.
In other words, the inverse of a jacket matrix is determined by its element-wise or block-wise inverse. The definition above may also be expressed as:
\forallu,v\in\{1,2,...,n\}:~aiu,aiv ≠ 0,~~~~
n | |
\sum | |
i=1 |
-1 | |
a | |
iu |
aiv=\begin{cases} n,&u=v\\ 0,&u ≠ v \end{cases}
The jacket matrix is a generalization of the Hadamard matrix; it is a diagonal block-wise inverse matrix.
- | n | .... −2, −1, 0 1, 2,..... | logarithm |
2n | .... {1\over4},{1\over2}, | series | |
As shown in the table, i.e. in the series, for example with n=2, forward:
22=4
(22)-1={1\over4}
4*{1\over4}=1
A=\left[\begin{array}{rrrr}1&1&1&1\ 1&-2&2&-1\ 1&2&-2&-1\ 1&-1&-1&1\ \end{array}\right],
B={1\over4}\left[\begin{array}{rrrr}1&1&1&1\\[6pt]1&-{1\over2}&{1\over2}&-1\\[6pt] 1&{1\over2}&-{1\over2}&-1\\[6pt]1&-1&-1&1\\[6pt]\end{array} \right].
or more general
A=\left[\begin{array}{rrrr}a&b&b&a\ b&-c&c&-b\ b&c&-c&-b\\ a&-b&-b&a\end{array}\right],
B={1\over4}\left[\begin{array}{rrrr}{1\overa}&{1\overb}&{1\overb}&{1\overa}\\[6pt]{1\overb}&-{1\overc}&{1\overc}&-{1\overb}\\[6pt]{1\overb}&{1\overc}&-{1\overc}&-{1\overb}\\[6pt]{1\overa}&-{1\overb}&-{1\overb}&{1\overa}\end{array}\right],
For m x m matrices,
Aj, |
Aj=diag(A | |
1, |
A2,..An)
J4=\left[\begin{array}{rrrr}I2&0&0&0\ 0&\cos\theta&-\sin\theta&0\ 0&\sin\theta&\cos\theta&0\\ 0&0&0&I2\end{array}\right],
T | |
J | |
4 |
J4=J4
T | |
J | |
4=I |
4.
ei+1=0
ei=\cos{\pi}+i\sin{\pi}=-1
e-i=\cos{\pi}-i\sin{\pi}=-1
eie-i=(-1)(
1 | |
-1 |
)=1
Also,
y=ex
dy | |
dx |
=ex
dy | |
dx |
dx | |
dy |
=ex
1 | |
ex |
=1
Finally,
A·B = B·A = I
Consider
[A]N
N=2p
[A]N=\left[\begin{array}{rrrr}A0&A1\ A1&A0\ \end{array}\right],
[A0]p
[A1]p
[A]N
A0
rt | |
A | |
1 |
rt | |
+A | |
1 |
A0
Let
A0=\left[\begin{array}{rrrr}-1&1\ 1&1\ \end{array}\right],
A1=\left[\begin{array}{rrrr}-1&-1\ -1&1\ \end{array}\right],
[A]N
[A]4=\left[\begin{array}{rrrr}A0&A1\ A0&A1\ \end{array}\right] =\left[\begin{array}{rrrr}-1&1&-1&-1\ 1&1&-1&1\ -1&1&-1&-1\ 1&1&-1&1\ \end{array}\right],
[A]4
\left[\begin{array}{rrrr}U&C&A&G\ \end{array}\right]T ⊗ \left[\begin{array}{rrrr}U&C&A&G\ \end{array}\right] ⊗ \left[\begin{array}{rrrr}U&C&A&G\ \end{array}\right]T,
[A]4
[1] Moon Ho Lee, "The Center Weighted Hadamard Transform", IEEE Transactions on Circuits Syst. Vol. 36, No. 9, PP. 1247–1249, Sept. 1989.
[2] Kathy Horadam, Hadamard Matrices and Their Applications, Princeton University Press, UK, Chapter 4.5.1: The jacket matrix construction, PP. 85–91, 2007.
[3] Moon Ho Lee, Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing, LAP LAMBERT Publishing, Germany, Nov. 2012.
[4] Moon Ho Lee, et. al., "MIMO Communication Method and System using the Block Circulant Jacket Matrix," US patent, no. US 009356671B1, May, 2016.
[5] S. K. Lee and M. H. Lee, “The COVID-19 DNA-RNA Genetic Code Analysis Using Information Theory of Double Stochastic Matrix,” IntechOpen, Book Chapter, April 17, 2022. [Available in Online: https://www.intechopen.com/chapters/81329].