Jacket matrix explained

A=(aij)

of order n if its entries are non-zero and real, complex, or from a finite field, and

AB=BA=In

where In is the identity matrix, and

B={1\over

-1
n}(a
ij

)T.

where T denotes the transpose of the matrix.

In other words, the inverse of a jacket matrix is determined by its element-wise or block-wise inverse. The definition above may also be expressed as:

\forallu,v\in\{1,2,...,n\}:~aiu,aiv0,~~~~

n
\sum
i=1
-1
a
iu

aiv=\begin{cases} n,&u=v\\ 0,&uv \end{cases}

The jacket matrix is a generalization of the Hadamard matrix; it is a diagonal block-wise inverse matrix.

Motivation

-n .... −2, −1, 0 1, 2,..... logarithm
2n ....

{1\over4},{1\over2},

1, 2, 4, ...
series

As shown in the table, i.e. in the series, for example with n=2, forward:

22=4

, inverse :

(22)-1={1\over4}

, then,

4*{1\over4}=1

. That is, there exists an element-wise inverse.

Example 1.

A=\left[\begin{array}{rrrr}1&1&1&1\1&-2&2&-1\1&2&-2&-1\1&-1&-1&1\\end{array}\right],

B={1\over4}\left[\begin{array}{rrrr}1&1&1&1\\[6pt]1&-{1\over2}&{1\over2}&-1\\[6pt] 1&{1\over2}&-{1\over2}&-1\\[6pt]1&-1&-1&1\\[6pt]\end{array} \right].

or more general

A=\left[\begin{array}{rrrr}a&b&b&a\b&-c&c&-b\b&c&-c&-b\\ a&-b&-b&a\end{array}\right],

B={1\over4}\left[\begin{array}{rrrr}{1\overa}&{1\overb}&{1\overb}&{1\overa}\\[6pt]{1\overb}&-{1\overc}&{1\overc}&-{1\overb}\\[6pt]{1\overb}&{1\overc}&-{1\overc}&-{1\overb}\\[6pt]{1\overa}&-{1\overb}&-{1\overb}&{1\overa}\end{array}\right],

Example 2.

For m x m matrices,

Aj,
Aj=diag(A
1,

A2,..An)

denotes an mn x mn block diagonal Jacket matrix.

J4=\left[\begin{array}{rrrr}I2&0&0&0\0&\cos\theta&-\sin\theta&0\0&\sin\theta&\cos\theta&0\\ 0&0&0&I2\end{array}\right],

T
J
4

J4=J4

T
J
4=I

4.

Example 3.

Euler's formula

ei+1=0

,

ei=\cos{\pi}+i\sin{\pi}=-1

and

e-i=\cos{\pi}-i\sin{\pi}=-1

.Therefore,

eie-i=(-1)(

1
-1

)=1

.

Also,

y=ex

dy
dx

=ex

,
dy
dx
dx
dy

=ex

1
ex

=1

.

Finally,

A·B = B·A = I

Example 4.

Consider

[A]N

be 2x2 block matrices of order

N=2p

[A]N=\left[\begin{array}{rrrr}A0&A1\A1&A0\\end{array}\right],

.If

[A0]p

and

[A1]p

are pxp Jacket matrix, then

[A]N

is a block circulant matrix if and only if

A0

rt
A
1
rt
+A
1

A0

, where rt denotes the reciprocal transpose.

Example 5.

Let

A0=\left[\begin{array}{rrrr}-1&1\ 1&1\\end{array}\right],

and

A1=\left[\begin{array}{rrrr}-1&-1\ -1&1\\end{array}\right],

, then the matrix

[A]N

is given by

[A]4=\left[\begin{array}{rrrr}A0&A1\A0&A1\\end{array}\right] =\left[\begin{array}{rrrr}-1&1&-1&-1\1&1&-1&1\-1&1&-1&-1\1&1&-1&1\\end{array}\right],

,

[A]4

\left[\begin{array}{rrrr}U&C&A&G\\end{array}\right]T\left[\begin{array}{rrrr}U&C&A&G\\end{array}\right]\left[\begin{array}{rrrr}U&C&A&G\\end{array}\right]T,

where U, C, A, G denotes the amount of the DNA nucleobases and the matrix

[A]4

is the block circulant Jacket matrix which leads to the principle of the Antagonism with Nirenberg Genetic Code matrix.

References

[1] Moon Ho Lee, "The Center Weighted Hadamard Transform", IEEE Transactions on Circuits Syst. Vol. 36, No. 9, PP. 1247–1249, Sept. 1989.

[2] Kathy Horadam, Hadamard Matrices and Their Applications, Princeton University Press, UK, Chapter 4.5.1: The jacket matrix construction, PP. 85–91, 2007.

[3] Moon Ho Lee, Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing, LAP LAMBERT Publishing, Germany, Nov. 2012.

[4] Moon Ho Lee, et. al., "MIMO Communication Method and System using the Block Circulant Jacket Matrix," US patent, no. US 009356671B1, May, 2016.

[5] S. K. Lee and M. H. Lee, “The COVID-19 DNA-RNA Genetic Code Analysis Using Information Theory of Double Stochastic Matrix,” IntechOpen, Book Chapter, April 17, 2022. [Available in Online: https://www.intechopen.com/chapters/81329].

External links