In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form
\limm\limnan,m=\limm\left(\limnan,m\right)
\limy\limxf(x,y)=\limy\left(\limxf(x,y)\right)
or other similar forms.
An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value depends only on the other variable, and then one takes the limit as the other variable approaches some number.
This section introduces definitions of iterated limits in two variables. These may generalize easily to multiple variables.
For each
n,m\inN
an,m\inR
\limm\limnan,m and \limn\limman,m
For example, let
an,m=
n | |
n+m |
Then
\limm\limnan,m=\limm1=1
\limn\limman,m=\limn0=0
Let
f:X x Y\toR
\limy\limxf(x,y) and \limx\limyf(x,y)
For example, let
f:R2\setminus\{(0,0)\}\toR
f(x,y)=
x2 | |
x2+y2 |
Then
\limy\limx
x2 | |
x2+y2 |
=\limy0=0
\limx\limy\to0
x2 | |
x2+y2 |
=\limx1=1
The limit(s) for x and/or y can also be taken at infinity, i.e.,
\limy\limxf(x,y) and \limx\limyf(x,y)
For each
n\inN
fn:X\toR
\limn\limxfn(x) and \limx\limnfn(x)
For example, let
fn:[0,1]\toR
fn(x)=xn
Then
\limn\limxfn(x)=\limn1=1
\limx\limnfn(x)=\limx0=0
\limy
x2 | |
x2+y2 |
=\begin{cases}1&forx ≠ 0\ 0&forx=0\end{cases}
\limx
\limnxn=\begin{cases}0&forx\in[0,1)\ 1&forx=1\end{cases}
\limx
x\ne1
The limit in x can also be taken at infinity, i.e.,
\limn\limxfn(x) and \limx\limnfn(x)
For example, let
fn:(0,infty)\toR
fn(x)=
1 | |
xn |
Then
\limn\limxfn(x)=\limn0=0
\limx\limnfn(x)=\limx0=0
Note that the limit in n is taken discretely, while the limit in x is taken continuously.
This section introduces various definitions of limits in two variables. These may generalize easily to multiple variables.
For a double sequence
an,m\inR
L=\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m
\epsilon>0
N=N(\epsilon)\inN
n,m>N
\left|an,m-L\right|<\epsilon
The following theorem states the relationship between double limit and iterated limits.
Theorem 1. If
\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m
\limnan,m
\limman,m
\limm\limnan,m
\limn\limman,m
\limm\limnan,m=\limn\limman,m=\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m
Proof. By existence of
\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m
\epsilon>0
N1=N1(\epsilon)\inN
n,m>N1
\left|an,m-L\right|<
\epsilon | |
2 |
Let each
n>N0
\limnan,m=An
N2=N2(\epsilon)\inN
m>N2
\left|an,m-An\right|<
\epsilon | |
2 |
Both the above statements are true for
n>max(N0,N1)
m>max(N1,N2)
\epsilon>0
N=N(\epsilon)\inN
n>N
\left|An-L\right|<\epsilon
which proves that
\limn\limman,m=\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m\displaystyle
\limman,m
\limm\limnan,m=\limn\limman,m=\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m
For example, let
an,m=
1 | |
n |
+
1 | |
m |
Since
\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m=0
\limnan,m=
1 | |
m |
\limm=
1 | |
n |
\limm\limnan,m=\limn\limman,m=0
This theorem requires the single limits
\limnan,m
\limman,m
an,m=(-1)m\left(
1 | |
n |
+
1 | |
m |
\right)
Then we may see that
\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m=\limm\limnan,m=0
but
\limn\limman,m
This is because
\limman,m
For a two-variable function
f:X x Y\toR
L=\lim(x,y)f(x,y)
which means that for all
\epsilon>0
\delta=\delta(\epsilon)>0
0<\sqrt{(x-a)2+(y-b)2}<\delta
\left|f(x,y)-L\right|<\epsilon
For this limit to exist, f(x, y) can be made as close to L as desired along every possible path approaching the point (a, b). In this definition, the point (a, b) is excluded from the paths. Therefore, the value of f at the point (a, b), even if it is defined, does not affect the limit.
The other type is the double limit, denoted by
L=\lim\begin{smallmatrixx\toa\ y\tob \end{smallmatrix}}f(x,y)
\epsilon>0
\delta=\delta(\epsilon)>0
0<\left|x-a\right|<\delta
0<\left|y-b\right|<\delta
\left|f(x,y)-L\right|<\epsilon
For this limit to exist, f(x, y) can be made as close to L as desired along every possible path approaching the point (a, b), except the lines x=a and y=b. In other words, the value of f along the lines x=a and y=b does not affect the limit. This is different from the ordinary limit where only the point (a, b) is excluded. In this sense, ordinary limit is a stronger notion than double limit:
Theorem 2. If
\lim(x,y)f(x,y)
\lim\begin{smallmatrixx\toa\ y\tob \end{smallmatrix}}f(x,y)
\lim\begin{smallmatrixx\toa\ y\tob \end{smallmatrix}}f(x,y)=\lim(x,y)f(x,y)
Both of these limits do not involve first taking one limit and then another. This contrasts with iterated limits where the limiting process is taken in x-direction first, and then in y-direction (or in reversed order).
The following theorem states the relationship between double limit and iterated limits:
Theorem 3. If
\lim\begin{smallmatrixx\toa\ y\tob \end{smallmatrix}}f(x,y)
\limxf(x,y)
\limyf(x,y)
\limx\limyf(x,y)
\limy\limxf(x,y)
\limx\limyf(x,y)=\limy\limxf(x,y)=\lim\begin{smallmatrixx\toa\ y\tob \end{smallmatrix}}f(x,y)
For example, let
f(x,y)=\begin{cases} 1 for xy\ne0\\ 0 for xy=0 \end{cases}
Since
\lim\begin{smallmatrixx\to0\ y\to0 \end{smallmatrix}}f(x,y)=1
\limxf(x,y)=\begin{cases} 1 for y\ne0\\ 0 for y=0 \end{cases}
\limyf(x,y)=\begin{cases} 1 for x\ne0\\ 0 for x=0 \end{cases}
\limx\limyf(x,y)=\limy\limxf(x,y)=1
\lim(x,y)f(x,y)
This theorem requires the single limits
\limxf(x,y)
\limyf(x,y)
f(x,y)=x\sin\left(
1 | |
y |
\right)
Then we may see that
\lim\begin{smallmatrixx\to0\ y\to0 \end{smallmatrix}}f(x,y)=\limy\limxf(x,y)=0
but
\limx\limyf(x,y)
This is because
\limyf(x,y)
Combining Theorem 2 and 3, we have the following corollary:
Corollary 3.1. If
\lim(x,y)f(x,y)
\limxf(x,y)
\limyf(x,y)
\limx\limyf(x,y)
\limy\limxf(x,y)
\limx\limyf(x,y)=\limy\limxf(x,y)=\lim(x,y)f(x,y)
For a two-variable function
f:X x Y\toR
L=\lim\begin{smallmatrixx\toinfty\ y\toinfty \end{smallmatrix}}f(x,y)
\epsilon>0
M=M(\epsilon)>0
x>M
y>M
\left|f(x,y)-L\right|<\epsilon
Similar definitions may be given for limits at negative infinity.
The following theorem states the relationship between double limit at infinity and iterated limits at infinity:
Theorem 4. If
\lim\begin{smallmatrixx\toinfty\ y\toinfty \end{smallmatrix}}f(x,y)
\limxf(x,y)
\limyf(x,y)
\limx\limyf(x,y)
\limy\limxf(x,y)
\limx\limyf(x,y)=\limy\limxf(x,y)=\lim\begin{smallmatrixx\toinfty\ y\toinfty \end{smallmatrix}}f(x,y)
For example, let
f(x,y)=
x\siny | |
xy+y |
Since
\lim\begin{smallmatrixx\toinfty\ y\toinfty \end{smallmatrix}}(x,y)=0
\limxf(x,y)=
\siny | |
y |
\limyf(x,y)=0
\limy\limxf(x,y)=\limx\limyf(x,y)=0
Again, this theorem requires the single limits
\limxf(x,y)
\limyf(x,y)
f(x,y)=
\cosx | |
y |
Then we may see that
\lim\begin{smallmatrixx\toinfty\ y\toinfty \end{smallmatrix}}f(x,y)=\limx\limyf(x,y)=0
but
\limy\limxf(x,y)
This is because
\limxf(x,y)
The converses of Theorems 1, 3 and 4 do not hold, i.e., the existence of iterated limits, even if they are equal, does not imply the existence of the double limit. A counter-example is
f(x,y)=
xy | |
x2+y2 |
near the point (0, 0). On one hand,
\limx\limyf(x,y)=\limy\limxf(x,y)=0
On the other hand, the double limit
\lim\begin{smallmatrixx\toa\ y\tob \end{smallmatrix}}f(x,y)
\lim\begin{smallmatrixt\to0\ t\to0 \end{smallmatrix}}f(t,t)=\limt
t2 | |
t2+t2 |
=
1 | |
2 |
and along the path (x, y) = (t, t2) → (0,0), which gives
\lim\begin{smallmatrixt\to0\ t2\to0 \end{smallmatrix}}f(t,t2)=\limt
t3 | |
t2+t4 |
=0
In the examples above, we may see that interchanging limits may or may not give the same result. A sufficient condition for interchanging limits is given by the Moore-Osgood theorem.[7] The essence of the interchangeability depends on uniform convergence.
The following theorem allows us to interchange two limits of sequences.
Theorem 5. If
\limnan,m=bm
\limman,m=cn
\limmbm
\limncn
\limm\limnan,m=\limn\limman,m=\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m
Proof. By the uniform convergence, for any
\epsilon>0
N1(\epsilon)\inN
m\inN
n,k>N1
\left|an,m-ak,m\right|<
\epsilon | |
3 |
As
m\toinfty
\left|cn-ck\right|<
\epsilon | |
3 |
cn
L
k\toinfty
\left|cn-L\right|<
\epsilon | |
3 |
On the other hand, if we take
k\toinfty
\left|an,m-bm\right|<
\epsilon | |
3 |
By the pointwise convergence, for any
\epsilon>0
n>N1
N2(\epsilon,n)\inN
m>N2
\left|an,m-cn\right|<
\epsilon | |
3 |
Then for that fixed
n
m>N2
\left|bm-L\right|\le\left|bm-an,m\right|+\left|an,m-cn\right|+\left|cn-L\right|\le\epsilon
This proves that
\limmbm=L=\limncn
Also, by taking
N=max\{N1,N2\}
\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}an,m
A corollary is about the interchangeability of infinite sum.
Corollary 5.1. If
infty | |
\sum | |
n=1 |
an,m
infty | |
\sum | |
m=1 |
an,m
infty | |
\sum | |
m=1 |
infty | |
\sum | |
n=1 |
an,m=
infty | |
\sum | |
n=1 |
infty | |
\sum | |
m=1 |
an,m
Proof. Direct application of Theorem 5 on
Sk,\ell=
k | |
\sum | |
m=1 |
\ell | |
\sum | |
n=1 |
an,m
Similar results hold for multivariable functions.
Theorem 6. If
\limxf(x,y)=g(y)
Y\setminus\{b\}
\limyf(x,y)=h(x)
\limyg(y)
\limxh(x)
\limy\limxf(x,y)=\limx\limyf(x,y)=\lim\begin{smallmatrixx\toa\ y\tob \end{smallmatrix}}f(x,y)
The a and b here can possibly be infinity.
Proof. By the existence uniform limit, for any
\epsilon>0
\delta1(\epsilon)>0
y\inY\setminus\{b\}
0<\left|x-a\right|<\delta1
0<\left|w-a\right|<\delta1
\left|f(x,y)-f(w,y)\right|<
\epsilon | |
3 |
As
y\tob
\left|h(x)-h(w)\right|<
\epsilon | |
3 |
\limx\toh(x)
L
w\toa
\left|h(x)-L\right|<
\epsilon | |
3 |
On the other hand, if we take
w\toa
\left|f(x,y)-g(y)\right|<
\epsilon | |
3 |
By the existence of pointwise limit, for any
\epsilon>0
x
a
\delta2(\epsilon,x)>0
0<\left|y-b\right|<\delta2
\left|f(x,y)-h(x)\right|<
\epsilon | |
3 |
Then for that fixed
x
0<\left|y-b\right|<\delta2
\left|g(y)-L\right|\le\left|g(y)-f(x,y)\right|+\left|f(x,y)-h(x)\right|+\left|h(x)-L\right|\le\epsilon
This proves that
\limyg(y)=L=\limxh(x)
Also, by taking
\delta=min\{\delta1,\delta2\}
\lim\begin{smallmatrixx\toa\ y\tob \end{smallmatrix}}f(x,y)
Note that this theorem does not imply the existence of
\lim(x,y)\to(a,b)f(x,y)
f(x,y)=\begin{cases} 1 for xy\ne0\\ 0 for xy=0 \end{cases}
An important variation of Moore-Osgood theorem is specifically for sequences of functions.
Theorem 7. If
\limnfn(x)=f(x)
X\setminus\{a\}
\limxfn(x)=Ln
\limxf(x)
\limnLn
\limn\limxfn(x)=\limx\limnfn(x)
The a here can possibly be infinity.
Proof. By the uniform convergence, for any
\epsilon>0
N(\epsilon)\inN
x\inD\setminus\{a\}
n,m>N
\left|fn(x)-fm(x)\right|<
\epsilon | |
3 |
As
x\toa
\left|Ln-Lm\right|<
\epsilon | |
3 |
Ln
L
m\toinfty
\left|Ln-L\right|<
\epsilon | |
3 |
On the other hand, if we take
m\toinfty
\left|fn(x)-f(x)\right|<
\epsilon | |
3 |
By the existence of pointwise limit, for any
\epsilon>0
n>N
\delta(\epsilon,n)>0
0<\left|x-a\right|<\delta
\left|fn(x)-Ln\right|<
\epsilon | |
3 |
Then for that fixed
n
0<\left|x-a\right|<\delta
\left|f(x)-L\right|\le\left|f(x)-fn(x)\right|+\left|fn(x)-Ln\right|+\left|Ln-L\right|\le\epsilon
This proves that
\limxf(x)=L=\limnLn
A corollary is the continuity theorem for uniform convergence as follows:
Corollary 7.1. If
\limnfn(x)=f(x)
X
fn(x)
x=a\inX
f(x)
x=a
In other words, the uniform limit of continuous functions is continuous.
Proof. By Theorem 7,
\limx\tof(x)=\limx\to\limnfn(x)=\limn\limx\tofn(x)=\limnfn(a)=f(a)
Another corollary is about the interchangeability of limit and infinite sum.
Corollary 7.2. If
infty | |
\sum | |
n=0 |
fn(x)
X\setminus\{a\}
\limxfn(x)
\limx
infty | |
\sum | |
n=0 |
fn(x)=
infty | |
\sum | |
n=0 |
\limxfn(x)
Proof. Direct application of Theorem 7 on
Sk(x)=
k | |
\sum | |
n=0 |
fn(x)
x=a
Consider a matrix of infinite entries
\begin{bmatrix} 1&-1&0&0& … \\ 0&1&-1&0& … \\ 0&0&1&-1& … \\ \vdots&\vdots&\vdots&\vdots&\ddots \end{bmatrix}
Suppose we would like to find the sum of all entries. If we sum it column by column first, we will find that the first column gives 1, while all others give 0. Hence the sum of all columns is 1. However, if we sum it row by row first, it will find that all rows give 0. Hence the sum of all rows is 0.
The explanation for this paradox is that the vertical sum to infinity and horizontal sum to infinity are two limiting processes that cannot be interchanged. Let
Sn,m
\limm\limnSn,m=1
\limn\limmSn,m=0
\lim\begin{smallmatrixn\toinfty\ m\toinfty \end{smallmatrix}}Sn,m
By the integration theorem for uniform convergence, once we have
\limnfn(x)
X
[a,b]\subseteqX
\limn\to
b | |
\int | |
a |
fn(x)dx=
b | |
\int | |
a |
\limn\tofn(x)dx
However, such a property may fail for an improper integral over an unbounded interval
[a,infty)\subseteqX
Consider
L=
infty | |
\int | |
0 |
x2 | |
ex-1 |
dx=\limb\to
| ||||
\int | ||||
0 |
dx
We first expand the integrand as
x2 | |
ex-1 |
=
x2e-x | |
1-e-x |
=
infty | |
\sum | |
k=0 |
x2e-kx
x\in[0,infty)
One can prove by calculus that for
x\in[0,infty)
k\ge1
x2e-kx\le
4 | |
e2k2 |
infty | |
\sum | |
k=0 |
x2e-kx
[0,infty)
Then by the integration theorem for uniform convergence,
L=\limb
b | |
\int | |
0 |
infty | |
\sum | |
k=0 |
x2e-kxdx=\limb
infty | |
\sum | |
k=0 |
b | |
\int | |
0 |
x2e-kxdx
To further interchange the limit
\limb
infty | |
\sum | |
k=0 |
Note that
b | |
\int | |
0 |
x2e-kxdx\le
infty | |
\int | |
0 |
x2e-kxdx=
2 | |
k3 |
infty | |
\sum | |
k=0 |
b | |
\int | |
0 |
x2e-kx
[0,infty)
Then by the Moore-Osgood theorem,
L=\limb
infty | |
\sum | |
k=0 |
b | |
\int | |
0 |
x2e-kx=
infty | |
\sum | |
k=0 |
\limb
b | |
\int | |
0 |
x2e-kx=
infty | |
\sum | |
k=0 |
2 | |
k3 |
=2\zeta(3)