Isotopes of tin explained

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994)[1] and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

List of isotopes

|-| rowspan=2|99Sn[2] | rowspan=2 style="text-align:right" | 50| rowspan=2 style="text-align:right" | 49| rowspan=2|98.94850(63)#| rowspan=2|24(4) ms| β+ (95%)| 99In| rowspan=2|9/2+#| rowspan=2|| rowspan=2||-| β+, p (5%)| 98Cd|-| rowspan=2|100Sn| rowspan=2 style="text-align:right" | 50| rowspan=2 style="text-align:right" | 50| rowspan=2|99.93865(26)| rowspan=2|1.18(8) s| β+ (>83%)| 100In| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+, p (<17%)| 99Cd|-| rowspan=2|101Sn| rowspan=2 style="text-align:right" | 50| rowspan=2 style="text-align:right" | 51| rowspan=2|100.93526(32)| rowspan=2|2.22(5) s| β+| 101In| rowspan=2|(7/2+)| rowspan=2|| rowspan=2||-| β+, p?| 100Cd|-| 102Sn| style="text-align:right" | 50| style="text-align:right" | 52| 101.93029(11)| 3.8(2) s| β+| 102In| 0+| | |-| style="text-indent:1em" | 102mSn| colspan="3" style="text-indent:2em" | 2017(2) keV| 367(8) ns| IT| 102Sn| (6+)|||-| rowspan=2|103Sn| rowspan=2 style="text-align:right" | 50| rowspan=2 style="text-align:right" | 53| rowspan=2|102.92797(11)#| rowspan=2|7.0(2) s| β+ (98.8%)| 103In| rowspan=2|5/2+#| rowspan=2|| rowspan=2||-| β+, p (1.2%)| 102Cd|-| 104Sn| style="text-align:right" | 50| style="text-align:right" | 54| 103.923105(6)| 20.8(5) s| β+| 104In| 0+|||-| rowspan=2|105Sn| rowspan=2 style="text-align:right" | 50| rowspan=2 style="text-align:right" | 55| rowspan=2|104.921268(4)| rowspan=2|32.7(5) s| β+| 105In| rowspan=2|(5/2+)| rowspan=2|| rowspan=2||-| β+, p (0.011%)| 104Cd|-| 106Sn| style="text-align:right" | 50| style="text-align:right" | 56| 105.916957(5)| 1.92(8) min| β+| 106In| 0+|||-| 107Sn| style="text-align:right" | 50| style="text-align:right" | 57| 106.915714(6)| 2.90(5) min| β+| 107In| (5/2+)|||-| 108Sn| style="text-align:right" | 50| style="text-align:right" | 58| 107.911894(6)| 10.30(8) min| β+| 108In| 0+|||-| 109Sn| style="text-align:right" | 50| style="text-align:right" | 59| 108.911293(9)| 18.1(2) min| β+| 109In| 5/2+|||-| 110Sn| style="text-align:right" | 50| style="text-align:right" | 60| 109.907845(15)| 4.154(4) h| EC| 110In| 0+|||-| 111Sn| style="text-align:right" | 50| style="text-align:right" | 61| 110.907741(6)| 35.3(6) min| β+| 111In| 7/2+|||-| style="text-indent:1em" | 111mSn| colspan="3" style="text-indent:2em" | 254.71(4) keV| 12.5(10) μs| IT| 111Sn| 1/2+|||-| 112Sn| style="text-align:right" | 50| style="text-align:right" | 62|111.9048249(3)| colspan=3 align=center|Observationally Stable[3] | 0+| 0.0097(1)||-| 113Sn| style="text-align:right" | 50| style="text-align:right" | 63|112.9051759(17)| 115.08(4) d| β+| 113In| 1/2+|||-| rowspan=2 style="text-indent:1em" | 113mSn| rowspan=2 colspan="3" style="text-indent:2em" | 77.389(19) keV| rowspan=2|21.4(4) min| IT (91.1%)| 113Sn| rowspan=2|7/2+| rowspan=2|| rowspan=2||-| β+ (8.9%)| 113In|-| 114Sn| style="text-align:right" | 50| style="text-align:right" | 64|113.90278013(3)| colspan=3 align=center|Stable| 0+| 0.0066(1)||-| style="text-indent:1em" | 114mSn| colspan="3" style="text-indent:2em" | 3087.37(7) keV | 733(14) ns| IT| 114Sn| 7−|||-| 115Sn| style="text-align:right" | 50| style="text-align:right" | 65| 114.903344695(16)| colspan=3 align=center|Stable| 1/2+| 0.0034(1)||-| style="text-indent:1em" | 115m1Sn| colspan="3" style="text-indent:2em" | 612.81(4) keV| 3.26(8) μs| IT| 115Sn| 7/2+|||-| style="text-indent:1em" | 115m2Sn| colspan="3" style="text-indent:2em" | 713.64(12) keV| 159(1) μs| IT| 115Sn| 11/2−|||-| 116Sn| style="text-align:right" | 50| style="text-align:right" | 66| 115.90174283(10)| colspan=3 align=center|Stable| 0+| 0.1454(9)||-| style="text-indent:1em" | 116m1Sn| colspan="3" style="text-indent:2em" | 2365.975(21) keV| 348(19) ns| IT| 116Sn| 5−|||-| style="text-indent:1em" | 116m2Sn| colspan="3" style="text-indent:2em" | 3547.16(17) keV| 833(30) ns| IT| 116Sn| 10+|||-| 117Sn| style="text-align:right" | 50| style="text-align:right" | 67| 116.90295404(52)| colspan=3 align=center|Stable| 1/2+| 0.0768(7)||-| style="text-indent:1em" | 117m1Sn| colspan="3" style="text-indent:2em" | 314.58(4) keV| 13.939(24) d| IT| 117Sn| 11/2−|||-| style="text-indent:1em" | 117m2Sn| colspan="3" style="text-indent:2em" | 2406.4(4) keV| 1.75(7) μs| IT| 117Sn| (19/2+)|||-| 118Sn| style="text-align:right" | 50| style="text-align:right" | 68| 117.90160663(54)| colspan=3 align=center|Stable| 0+| 0.2422(9)||-| style="text-indent:1em" | 118m1Sn| colspan="3" style="text-indent:2em" | 2574.91(4) keV| 230(10) ns| IT| 118Sn| 7−|||-| style="text-indent:1em" | 118m2Sn| colspan="3" style="text-indent:2em" | 3108.06(22) keV| 2.52(6) μs| IT| 118Sn| (10+)|||-| 119Sn| style="text-align:right" | 50| style="text-align:right" | 69| 118.90331127(78)| colspan=3 align=center|Stable| 1/2+| 0.0859(4)||-| style="text-indent:1em" | 119m1Sn| colspan="3" style="text-indent:2em" | 89.531(13) keV| 293.1(7) d| IT| 119Sn| 11/2−|||-| style="text-indent:1em" | 119m2Sn| colspan="3" style="text-indent:2em" | 2127.0(10) keV| 9.6(12) μs| IT| 119Sn| (19/2+)|||-| style="text-indent:1em" | 119m3Sn| colspan="3" style="text-indent:2em" | 2369.0(3) keV| 96(9) ns| IT| 119Sn| 23/2+|||-| 120Sn| style="text-align:right" | 50| style="text-align:right" | 70| 119.90220256(99)| colspan=3 align=center|Stable| 0+| 0.3258(9)||-| style="text-indent:1em" | 120m1Sn| colspan="3" style="text-indent:2em" | 2481.63(6) keV| 11.8(5) μs| IT| 120Sn| 7−|||-| style="text-indent:1em" | 120m2Sn| colspan="3" style="text-indent:2em" | 2902.22(22) keV| 6.26(11) μs| IT| 120Sn| 10+|||-| 121Sn[4] | style="text-align:right" | 50| style="text-align:right" | 71| 120.9042435(11)| 27.03(4) h| β| 121Sb| 3/2+|||-| rowspan=2 style="text-indent:1em" | 121m1Sn| rowspan=2 colspan="3" style="text-indent:2em" | 6.31(6) keV| rowspan=2|43.9(5) y| IT (77.6%)| 121Sn| rowspan=2| 11/2−| rowspan=2|| rowspan=2||-| β (22.4%)| 121Sb|-| style="text-indent:1em" | 121m2Sn| colspan="3" style="text-indent:2em" | 1998.68(13) keV| 5.3(5) μs| IT| 121Sn| 19/2+|||-| style="text-indent:1em" | 121m3Sn| colspan="3" style="text-indent:2em" | 2222.0(2) keV| 520(50) ns| IT| 121Sn| 23/2+|||-| style="text-indent:1em" | 121m4Sn| colspan="3" style="text-indent:2em" | 2833.9(2) keV| 167(25) ns| IT| 121Sn| 27/2−|||-| 122Sn| style="text-align:right" | 50| style="text-align:right" | 72| 121.9034455(26)| colspan=3 align=center|Observationally Stable[5] | 0+| 0.0463(3)||-| style="text-indent:1em" | 122m1Sn| colspan="3" style="text-indent:2em" | 2409.03(4) keV| 7.5(9) μs| IT| 122Sn| 7−|||-| style="text-indent:1em" | 122m2Sn| colspan="3" style="text-indent:2em" | 2765.5(3) keV| 62(3) μs| IT| 122Sn| 10+|||-| style="text-indent:1em" | 122m3Sn| colspan="3" style="text-indent:2em" | 4721.2(3) keV| 139(9) ns| IT| 122Sn| 15−|||-| 123Sn| style="text-align:right" | 50| style="text-align:right" | 73| 122.9057271(27)| 129.2(4) d| β| 123Sb| 11/2−|||-| style="text-indent:1em" | 123m1Sn| colspan="3" style="text-indent:2em" | 24.6(4) keV| 40.06(1) min| β| 123Sb| 3/2+|||-| style="text-indent:1em" | 123m2Sn| colspan="3" style="text-indent:2em" | 1944.90(12) keV| 7.4(26) μs| IT| 123Sn| 19/2+|||-| style="text-indent:1em" | 123m3Sn| colspan="3" style="text-indent:2em" | 2152.66(19) keV| 6 μs| IT| 123Sn| 23/2+|||-| style="text-indent:1em" | 123m4Sn| colspan="3" style="text-indent:2em" | 2712.47(21) keV| 34 μs| IT| 123Sn| 27/2−|||-| 124Sn| style="text-align:right" | 50| style="text-align:right" | 74| 123.9052796(14)| colspan=3 align=center|Observationally Stable[6] | 0+| 0.0579(5)||-| style="text-indent:1em" | 124m1Sn| colspan="3" style="text-indent:2em" | 2204.620(23) keV| 270(60) ns| IT| 124Sn| 5-|||-| style="text-indent:1em" | 124m2Sn| colspan="3" style="text-indent:2em" | 2324.96(4) keV| 3.1(5) μs| IT| 124Sn| 7−|||-| style="text-indent:1em" | 124m3Sn| colspan="3" style="text-indent:2em" | 2656.6(3) keV| 51(3) μs| IT| 124Sn| 10+|||-| style="text-indent:1em" | 124m4Sn| colspan="3" style="text-indent:2em" | 4552.4(3) keV| 260(25) ns| IT| 124Sn| 15−|||-| 125Sn| style="text-align:right" | 50| style="text-align:right" | 75| 124.9077894(14)| 9.634(15) d| β| 125Sb| 11/2−|||-| style="text-indent:1em" | 125m1Sn| colspan="3" style="text-indent:2em" | 27.50(14) keV| 9.77(25) min| β| 125Sb| 3/2+|||-| style="text-indent:1em" | 125m2Sn| colspan="3" style="text-indent:2em" | 1892.8(3) keV| 6.2(2) μs| IT| 125Sn| 19/2+|||-| style="text-indent:1em" | 125m3Sn| colspan="3" style="text-indent:2em" | 2059.5(4) keV| 650(60) ns| IT| 125Sn| 23/2+|||-| style="text-indent:1em" | 125m4Sn| colspan="3" style="text-indent:2em" | 2623.5(5) keV| 230(17) ns| IT| 125Sn| 27/2−|||-| 126Sn[7] | style="text-align:right" | 50| style="text-align:right" | 76| 125.907658(11)| 2.30(14)×105 y| β| 126Sb| 0+| < 10−14[8] | |-| style="text-indent:1em" | 126m1Sn| colspan="3" style="text-indent:2em" | 2218.99(8) keV| 6.1(7) μs| IT| 126Sn| 7−|||-| style="text-indent:1em" | 126m2Sn| colspan="3" style="text-indent:2em" | 2564.5(5) keV| 7.6(3) μs| IT| 126Sn| 10+|||-| style="text-indent:1em" | 126m3Sn| colspan="3" style="text-indent:2em" | 4347.4(4) keV| 114(2) ns| IT| 126Sn| 15−|||-| 127Sn| style="text-align:right" | 50| style="text-align:right" | 77| 126.9103917(99)| 2.10(4) h| β| 127Sb| 11/2−|||-| style="text-indent:1em" | 127m1Sn| colspan="3" style="text-indent:2em" | 5.07(6) keV| 4.13(3) min| β| 127Sb| 3/2+|||-| style="text-indent:1em" | 127m2Sn| colspan="3" style="text-indent:2em" | 1826.67(16) keV| 4.52(15) μs| IT| 127Sn| 19/2+|||-| style="text-indent:1em" | 127m3Sn| colspan="3" style="text-indent:2em" | 1930.97(17) keV| 1.26(15) μs| IT| 127Sn| (23/2+)|||-| style="text-indent:1em" | 127m4Sn| colspan="3" style="text-indent:2em" | 2552.4(10) keV| 250 ns (30) ns| IT| 127Sn| (27/2−)|||-| 128Sn| style="text-align:right" | 50| style="text-align:right" | 78|127.910508(19)| 59.07(14) min| β| 128Sb| 0+|||-| style="text-indent:1em" | 128m1Sn| colspan="3" style="text-indent:2em" | 2091.50(11) keV| 6.5(5) s| IT| 128Sn| 7−|||-| style="text-indent:1em" | 128m2Sn| colspan="3" style="text-indent:2em" | 2491.91(17) keV| 2.91(14) μs| IT| 128Sn| 10+|||-| style="text-indent:1em" | 128m3Sn| colspan="3" style="text-indent:2em" | 4099.5(4) keV| 220(30) ns| IT| 128Sn| (15−)|||-| 129Sn| style="text-align:right" | 50| style="text-align:right" | 79| 128.913482(19)| 2.23(4) min| β| 129Sb| 3/2+|||-| style="text-indent:1em" | 129m1Sn| colspan="3" style="text-indent:2em" | 35.15(5) keV| 6.9(1) min| β| 129Sb| 11/2−| | |-| style="text-indent:1em" | 129m2Sn| colspan="3" style="text-indent:2em" | 1761.6(10) keV| 3.49(11) μs| IT| 129Sn| (19/2+)| | |-| style="text-indent:1em" | 129m3Sn| colspan="3" style="text-indent:2em" | 1802.6(10) keV| 2.22(13) μs| IT| 129Sn| 23/2+| | |-| style="text-indent:1em" | 129m4Sn| colspan="3" style="text-indent:2em" | 2552.9(11) keV| 221(18) ns| IT| 129Sn| (27/2−)| | |-| 130Sn| style="text-align:right" | 50| style="text-align:right" | 80|129.9139745(20)| 3.72(7) min| β| 130Sb| 0+|||-| style="text-indent:1em" | 130m1Sn| colspan="3" style="text-indent:2em" | 1946.88(10) keV| 1.7(1) min| β| 130Sb| 7−|||-| style="text-indent:1em" | 130m2Sn| colspan="3" style="text-indent:2em" | 2434.79(12) keV| 1.501(17) μs| IT| 130Sn| (10+)|||-| 131Sn| style="text-align:right" | 50| style="text-align:right" | 81| 130.917053(4)| 56.0(5) s| β| 131Sb| 3/2+|||-| rowspan=2 style="text-indent:1em" | 131m1Sn| rowspan=2 colspan="3" style="text-indent:2em" | 65.1(3) keV| rowspan=2|58.4(5) s| β| 131Sb| rowspan=2|11/2−| rowspan=2|| rowspan=2||-| IT?| 131Sn|-| style="text-indent:1em" | 131m2Sn| colspan="3" style="text-indent:2em" | 4670.0(4) keV| 316(5) ns| IT| 131Sn| (23/2−)|||-| 132Sn| style="text-align:right" | 50| style="text-align:right" | 82| 131.9178239(21)| 39.7(8) s| β| 132Sb| 0+|||-| style="text-indent:1em" | 132mSn| colspan="3" style="text-indent:2em" | 4848.52(20) keV| 2.080(16) μs| IT| 132Sn| 8+|||-| rowspan=2|133Sn| rowspan=2 style="text-align:right" | 50| rowspan=2 style="text-align:right" | 83| rowspan=2|132.9239138(20)| rowspan=2|1.37(7) s| β (99.97%)| 133Sb| rowspan=2|7/2−| rowspan=2|| rowspan=2||-| β, n (.0294%)| 132Sb|-| rowspan=2|134Sn| rowspan=2 style="text-align:right" | 50| rowspan=2 style="text-align:right" | 84| rowspan=2| 133.928680(3)| rowspan=2| 0.93(8) s| β (83%)| 134Sb| rowspan=2|0+| rowspan=2|| rowspan=2||-| β, n (17%)| 133Sb|-| style="text-indent:1em" | 134mSn| colspan="3" style="text-indent:2em" | 1247.4(5) keV| 87(8) ns| IT| 132Sn| 6+|||-| rowspan=3|135Sn| rowspan=3 style="text-align:right" | 50| rowspan=3 style="text-align:right" | 85| rowspan=3| 134.934909(3)| rowspan=3|515(5) ms| β (79%)| 135Sb| rowspan=3|7/2−#| rowspan=3|| rowspan=3||-| β, n (21%)| 134Sb|-| β, 2n?| 133Sb|-| rowspan=3|136Sn| rowspan=3 style="text-align:right" | 50| rowspan=3 style="text-align:right" | 86| rowspan=3| 135.93970(22)#| rowspan=3|355(18) ms| β (72%)| 136Sb| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n (28%)| 135Sb|-| β, 2n?| 134Sb|-| rowspan=3|137Sn| rowspan=3 style="text-align:right" | 50| rowspan=3 style="text-align:right" | 87| rowspan=3|136.94616(32)#| rowspan=3|249(15) ms| β (52%)| 137Sb| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n (48%)| 136Sb|-| β, 2n?| 135Sb|-| rowspan=3|138Sn| rowspan=3 style="text-align:right" | 50| rowspan=3 style="text-align:right" | 88| rowspan=3|137.95114(43)#| rowspan=3|148(9) ms| β (64%)| 138Sb| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n (36%)| 137Sb|-| β, 2n?| 136Sb|-| style="text-indent:1em" | 138mSn| colspan="3" style="text-indent:2em" | 1344(2) keV| 210(45) ns| IT| 138Sn| (6+)|||-| rowspan=3|139Sn| rowspan=3 style="text-align:right" | 50| rowspan=3 style="text-align:right" | 89| rowspan=3|138.95780(43)#| rowspan=3|120(38) ms| β| 139Sb| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n?| 138Sb|-| β, 2n?| 137Sb|-|rowspan=3| 140Sn|rowspan=3 style="text-align:right" | 50|rowspan=3 style="text-align:right" | 90|rowspan=3| 139.96297(32)#|rowspan=3| 50# ms
[>550&nbsp;ns]|β?|140Sb|rowspan=3|0+|rowspan=3||rowspan=3||-|β, n?|139Sb|-|β, 2n?|138Sb

Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).[9]

Tin-121m

Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.[10]

Tin-126

Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.

Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

References

Notes and References

  1. K. Sümmerer . R. Schneider . T Faestermann . J. Friese . H. Geissel . R. Gernhäuser . H. Gilg . F. Heine . J. Homolka . P. Kienle . H. J. Körner . G. Münzenberg . J. Reinhold . K. Zeitelhack . Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS . Nuclear Physics A . April 1997 . 616 . 1–2 . 341–345 . 10.1016/S0375-9474(97)00106-1. 1997NuPhA.616..341S.
  2. Heaviest known nuclide with more protons than neutrons
  3. Believed to decay by β+β+ to 112Cd
  4. [Fission product]
  5. Believed to undergo ββ decay to 122Te
  6. Believed to undergo ββ decay to 124Te with a half-life over 1×1017 years
  7. [Long-lived fission product]
  8. Shen . Hongtao . Jiang . Shan . He . Ming . Dong . Kejun . Li . Chaoli . He . Guozhu . Wu . Shaolei . Gong . Jie . Lu . Liyan . Li . Shizhuo . Zhang . Dawei . Shi . Guozhu . Huang . Chuntang . Wu . Shaoyong . Study on measurement of fission product nuclide 126Sn by AMS . Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms . February 2011 . 269 . 3 . 392–395 . 10.1016/j.nimb.2010.11.059 .
  9. Web site: https://www.nrc.gov/site-help/search.html?site=AllSites&searchtext=synovetin .
  10. M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)