Isotopes of rhenium explained

Naturally occurring rhenium (75Re) is 37.4% 185Re, which is stable (although it is predicted to decay), and 62.6% 187Re, which is unstable but has a very long half-life (4.12×1010 years).[1] Among elements with a known stable isotope, only indium and tellurium similarly occur with a stable isotope in lower abundance than the long-lived radioactive isotope.

There are 36 other unstable isotopes recognized, the longest-lived of which are 183Re with a half-life of 70 days, 184Re with a half-life of 38 days, 186Re with a half-life of 3.7186 days, 182Re with a half-life of 64.0 hours, and 189Re with a half-life of 24.3 hours. There are also numerous isomers, the longest-lived of which are 186mRe with a half-life of 200,000 years and 184mRe with a half-life of 177.25 days. All others have half-lives less than a day.

List of isotopes

|-| rowspan=2|159Re[2] | rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 84| rowspan=2|| rowspan=2|21(4) μs| p (92.5%)| 158W| rowspan=2|(11/2−)| rowspan=2|| rowspan=2||-| α (7.5%)| 155Ta|-| rowspan=2|160Re[3] | rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 85| rowspan=2|159.98212(43)#| rowspan=2|611(7) μs| p (89%)| 159W| rowspan=2|(2−)| rowspan=2|| rowspan=2||-| α (11%)| 156Ta|-| style="text-indent:1em" | 160mRe[4] | colspan="3" style="text-indent:2em" | 185(21)# keV| 2.8(1) μs| IT| 160Re| (9+)|||-| 161Re| style="text-align:right" | 75| style="text-align:right" | 86| 160.97759(22)| 0.37(4) ms| p| 160W| 1/2+|||-| style="text-indent:1em" | 161mRe| colspan="3" style="text-indent:2em" | 123.8(13) keV| 15.6(9) ms| α| 157Ta| 11/2−|||-| rowspan=2|162Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 87| rowspan=2|161.97600(22)#| rowspan=2|107(13) ms| α (94%)| 158Ta| rowspan=2|(2−)| rowspan=2|| rowspan=2||-| β+ (6%)| 162W|-| rowspan=2 style="text-indent:1em" | 162mRe| rowspan=2 colspan="3" style="text-indent:2em" | 173(10) keV| rowspan=2|77(9) ms| α (91%)| 158Ta| rowspan=2|(9+)| rowspan=2|| rowspan=2||-| β+ (9%)| 162W|-| rowspan=2|163Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 88| rowspan=2|162.972081(21)| rowspan=2|390(70) ms| β+ (68%)| 163W| rowspan=2|(1/2+)| rowspan=2|| rowspan=2||-| α (32%)| 159Ta|-| rowspan=2 style="text-indent:1em" | 163mRe| rowspan=2 colspan="3" style="text-indent:2em" | 115(4) keV| rowspan=2|214(5) ms| α (66%)| 159Ta| rowspan=2|(11/2−)| rowspan=2|| rowspan=2||-| β+ (34%)| 163W|-| rowspan=2|164Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 89| rowspan=2|163.97032(17)#| rowspan=2|0.53(23) s| α (58%)| 160Ta| rowspan=2|high| rowspan=2|| rowspan=2||-| β+ (42%)| 164W|-| style="text-indent:1em" | 164mRe| colspan="3" style="text-indent:2em" | 120(120)# keV| 530(230) ms||| (2#)−|||-| rowspan=2|165Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 90| rowspan=2|164.967089(30)| rowspan=2|1# s| β+| 165W| rowspan=2|1/2+#| rowspan=2|| rowspan=2||-| α| 161Ta|-| rowspan=2 style="text-indent:1em" | 165mRe| rowspan=2 colspan="3" style="text-indent:2em" | 47(26) keV| rowspan=2|2.1(3) s| β+ (87%)| 165W| rowspan=2|11/2−#| rowspan=2| | rowspan=2||-| α (13%)| 161Ta|-| rowspan=2|166Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 91| rowspan=2|165.96581(9)#| rowspan=2|2# s| β+| 166W| rowspan=2|2−#| rowspan=2|| rowspan=2||-| α| 162Ta|-| rowspan=2|167Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 92| rowspan=2|166.96260(6)#| rowspan=2|3.4(4) s| α| 163Ta| rowspan=2|9/2−#| rowspan=2|| rowspan=2||-| β+| 167W|-| rowspan=2 style="text-indent:1em" | 167mRe| rowspan=2 colspan="3" style="text-indent:2em" | 130(40)# keV| rowspan=2|5.9(3) s| β+ (99.3%)| 167W| rowspan=2|1/2+#| rowspan=2|| rowspan=2||-| α (.7%)| 163Ta|-| rowspan=2|168Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 93| rowspan=2|167.96157(3)| rowspan=2|4.4(1) s| β+ (99.99%)| 168W| rowspan=2|(5+, 6+, 7+)| rowspan=2|| rowspan=2||-| α (.005%)| 164Ta|-| style="text-indent:1em" | 168mRe| colspan="3" style="text-indent:2em" | non-exist| 6.6(15) s||||||-| rowspan=2|169Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 94| rowspan=2|168.95879(3)| rowspan=2|8.1(5) s| β+ (99.99%)| 169W| rowspan=2|9/2−#| rowspan=2|| rowspan=2||-| α (.005%)| 165Ta|-| rowspan=2 style="text-indent:1em" | 169mRe| rowspan=2 colspan="3" style="text-indent:2em" | 145(29) keV| rowspan=2|15.1(15) s| β+ (99.8%)| 169W| rowspan=2|1/2+#| rowspan=2|| rowspan=2||-| α (.2%)| 164Ta|-| rowspan=2|170Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 95| rowspan=2|169.958220(28)| rowspan=2|9.2(2) s| β+ (99.99%)| 170W| rowspan=2|(5+)| rowspan=2|| rowspan=2||-| α (.01%)| 166Ta|-| 171Re| style="text-align:right" | 75| style="text-align:right" | 96| 170.95572(3)| 15.2(4) s| β+| 171W| (9/2−)|||-| 172Re| style="text-align:right" | 75| style="text-align:right" | 97| 171.95542(6)| 15(3) s| β+| 172W| (5)|||-| style="text-indent:1em" | 172mRe| colspan="3" style="text-indent:2em" | 0(100)# keV| 55(5) s| β+| 172W| (2)|||-| 173Re| style="text-align:right" | 75| style="text-align:right" | 98| 172.95324(3)| 1.98(26) min| β+| 173W| (5/2−)|||-| 174Re| style="text-align:right" | 75| style="text-align:right" | 99| 173.95312(3)| 2.40(4) min| β+| 174W||||-| 175Re| style="text-align:right" | 75| style="text-align:right" | 100| 174.95138(3)| 5.89(5) min| β+| 175W| (5/2−)|||-| 176Re| style="text-align:right" | 75| style="text-align:right" | 101| 175.95162(3)| 5.3(3) min| β+| 176W| 3+|||-| 177Re| style="text-align:right" | 75| style="text-align:right" | 102| 176.95033(3)| 14(1) min| β+| 177W| 5/2−|||-| style="text-indent:1em" | 177mRe| colspan="3" style="text-indent:2em" | 84.71(10) keV| 50(10) μs||| 5/2+|||-| 178Re| style="text-align:right" | 75| style="text-align:right" | 103| 177.95099(3)| 13.2(2) min| β+| 178W| (3+)|||-| 179Re| style="text-align:right" | 75| style="text-align:right" | 104| 178.949988(26)| 19.5(1) min| β+| 179W| (5/2)+|||-| style="text-indent:1em" | 179m1Re| colspan="3" style="text-indent:2em" | 65.39(9) keV| 95(25) μs||| (5/2−)|||-| style="text-indent:1em" | 179m2Re| colspan="3" style="text-indent:2em" | 1684.59(14)+Y keV| >0.4 μs||| (23/2+)|||-| 180Re| style="text-align:right" | 75| style="text-align:right" | 105| 179.950789(23)| 2.44(6) min| β+| 180W| (1)−|||-| 181Re| style="text-align:right" | 75| style="text-align:right" | 106| 180.950068(14)| 19.9(7) h| β+| 181W| 5/2+|||-| 182Re| style="text-align:right" | 75| style="text-align:right" | 107| 181.95121(11)| 64.0(5) h| β+| 182W| 7+|||-| style="text-indent:1em" | 182m1Re| colspan="3" style="text-indent:2em" | 60(100) keV| 12.7(2) h| β+| 182W| 2+|||-| style="text-indent:1em" | 182m2Re| colspan="3" style="text-indent:2em" | 235.736(10)+X keV| 585(21) ns||| 2−|||-| style="text-indent:1em" | 182m3Re| colspan="3" style="text-indent:2em" | 461.3(1)+X keV| 0.78(9) μs||| (4−)|||-| 183Re| style="text-align:right" | 75| style="text-align:right" | 108| 182.950820(9)| 70.0(14) d| EC| 183W| 5/2+|||-| style="text-indent:1em" | 183mRe| colspan="3" style="text-indent:2em" | 1907.6(3) keV| 1.04(4) ms| IT| 183Re| (25/2+)|||-| 184Re| style="text-align:right" | 75| style="text-align:right" | 109| 183.952521(5)| 35.4(7) d| β+| 184W| 3(−)|||-| rowspan=2 style="text-indent:1em" | 184mRe| rowspan=2 colspan="3" style="text-indent:2em" | 188.01(4) keV| rowspan=2|177.25(7) d[5] | IT (75.4%)| 184Re| rowspan=2|8(+)| rowspan=2|| rowspan=2||-| β+ (24.6%)| 184W|-| 185Re| style="text-align:right" | 75| style="text-align:right" | 110| 184.9529550(13)| colspan=3 align=center|Observationally Stable[6] | 5/2+| 0.3740(2)||-| style="text-indent:1em" | 185mRe| colspan="3" style="text-indent:2em" | 2124(2) keV| 123(23) ns||| (21/2)|||-| rowspan=2|186Re| rowspan=2 style="text-align:right" | 75| rowspan=2 style="text-align:right" | 111| rowspan=2|185.9549861(13)| rowspan=2|3.7186(5) d| β (93.1%)| 186Os| rowspan=2|1−| rowspan=2|| rowspan=2||-| EC (6.9%)| 186W|-| style="text-indent:1em" | 186mRe| colspan="3" style="text-indent:2em" | 149(7) keV| 2.0(5)×105 y| IT| 186Re| (8+)|||-| 187Re[7] [8] | style="text-align:right" | 75| style="text-align:right" | 112| 186.9557531(15)| 4.12(2)×1010 y[9] | β[10] | 187Os| 5/2+| 0.6260(2)| |-| 188Re| style="text-align:right" | 75| style="text-align:right" | 113| 187.9581144(15)| 17.0040(22) h| β| 188Os| 1−|||-| style="text-indent:1em" | 188mRe| colspan="3" style="text-indent:2em" | 172.069(9) keV| 18.59(4) min| IT| 188Re| (6)−|||-| 189Re| style="text-align:right" | 75| style="text-align:right" | 114| 188.959229(9)| 24.3(4) h| β| 189Os| 5/2+|||-| 190Re| style="text-align:right" | 75| style="text-align:right" | 115| 189.96182(16)| 3.1(3) min| β| 190Os| (2)−|||-| rowspan=2 style="text-indent:1em" | 190mRe| rowspan=2 colspan="3" style="text-indent:2em" | 210(50) keV| rowspan=2|3.2(2) h| β (54.4%)| 190Os| rowspan=2|(6−)| rowspan=2|| rowspan=2||-| IT (45.6%)| 190Re|-| 191Re| style="text-align:right" | 75| style="text-align:right" | 116| 190.963125(11)| 9.8(5) min| β| 191Os| (3/2+, 1/2+)|||-| 192Re| style="text-align:right" | 75| style="text-align:right" | 117| 191.96596(21)#| 16(1) s| β| 192Os||||-| 193Re| style="text-align:right" | 75| style="text-align:right" | 118| 192.96747(21)#| 30# s [>300 ns]||| 5/2+#|||-| 194Re| style="text-align:right" | 75| style="text-align:right" | 119| 193.97042(32)#| 2# s [>300 ns]|||||

Rhenium-186

Radiopharmaceutical.

References

  1. Bosch. F.. Faestermann. T.. Friese. J.. Heine. F.. Kienle. P.. Wefers. E.. Zeitelhack. K.. Beckert. K.. Franzke. B.. Klepper. O.. Kozhuharov. C.. Menzel. G.. Moshammer. R.. Nolden. F.. Reich. H.. Schlitt. B.. Steck. M.. Stöhlker. T.. Winkler. T.. Takahashi. K.. 3. Observation of bound-state β decay of fully ionized 187Re: 187Re-187Os Cosmochronometry. 1996. Physical Review Letters. 77. 26. 5190–5193. 10.1103/PhysRevLett.77.5190. 1996PhRvL..77.5190B. 10062738.
  2. Page . R. D. . Bianco . L. . Darby . I. G. . Uusitalo . J. . Joss . D. T. . Grahn . T. . Herzberg . R.-D. . Pakarinen . J. . Thomson . J. . Eeckhaudt . S. . Greenlees . P. T. . Jones . P. M. . Julin . R. . Juutinen . S. . Ketelhut . S. . Leino . M. . Leppänen . A.-P. . Nyman . M. . Rahkila . P. . Sarén . J. . Scholey . C. . Steer . A. . Hornillos . M. B. Gómez . Al-Khalili . J. S. . Cannon . A. J. . Stevenson . P. D. . Ertürk . S. . Gall . B. . Hadinia . B. . Venhart . M. . Simpson . J. . α decay of Re 159 and proton emission from Ta 155 . Physical Review C . 26 June 2007 . 75 . 6 . 061302 . 10.1103/PhysRevC.75.061302 . 2007PhRvC..75f1302P . 12 June 2023 . en . 0556-2813.
  3. Darby . I. G. . Page . R. D. . Joss . D. T. . Bianco . L. . Grahn . T. . Judson . D. S. . Simpson . J. . Eeckhaudt . S. . Greenlees . P. T. . Jones . P. M. . Julin . R. . Juutinen . S. . Ketelhut . S. . Leino . M. . Leppänen . A.-P. . Nyman . M. . Rahkila . P. . Sarén . J. . Scholey . C. . Steer . A. N. . Uusitalo . J. . Venhart . M. . Ertürk . S. . Gall . B. . Hadinia . B. . Precision measurements of proton emission from the ground states of Ta 156 and Re 160 . Physical Review C . 20 June 2011 . 83 . 6 . 064320 . 10.1103/PhysRevC.83.064320 . 2011PhRvC..83f4320D . 21 June 2023 . en . 0556-2813.
  4. Darby . I. G. . Page . R. D. . Joss . D. T. . Simpson . J. . Bianco . L. . Cooper . R. J. . Eeckhaudt . S. . Ertürk . S. . Gall . B. . Grahn . T. . Greenlees . P. T. . Hadinia . B. . Jones . P. M. . Judson . D. S. . Julin . R. . Juutinen . S. . Ketelhut . S. . Leino . M. . Leppänen . A. -P. . Nyman . M. . Rahkila . P. . Sarén . J. . Scholey . C. . Steer . A. N. . Uusitalo . J. . Venhart . M. . Decay of the high-spin isomer in 160Re: Changing single-particle structure beyond the proton drip line . Physics Letters B . 10 January 2011 . 695 . 1 . 78–81 . 10.1016/j.physletb.2010.10.052 . 2011PhLB..695...78D . en . 0370-2693. free .
  5. 10.1103/PhysRevC.106.044303 . Ł. . Janiak . M. . Gierlik . G. Madejowski . R. Prokopowicz . S. . Wronka . J. . Rzadkiewicz . J. J. . Carroll . C. J. . Chiara . Half-life of the 188-keV isomer of 184Re . 2022 . Physical Review C . 106 . 44303. 044303 . 2022PhRvC.106d4303J . 252792730 .
  6. Believed to undergo α decay to 181Ta
  7. [Primordial nuclide|primordial]
  8. Used in rhenium–osmium dating
  9. Can undergo Bound-state β decay with a half-life of 32.9 years when fully ionized
  10. Theorized to also undergo α decay to 183Ta