Isotopes of radon explained

There are 39 known isotopes of radon (86Rn), from 193Rn to 231Rn; all are radioactive. The most stable isotope is 222Rn with a half-life of 3.823 days, which decays into . Six isotopes of radon, 217, 218, 219, 220, 221, 222Rn, occur in trace quantities in nature as decay products of, respectively, 217At, 218At, 223Ra, 224Ra, 225Ra, and 226Ra. 217Rn and 221Rn are produced in rare branches in the decay chain of trace quantities of 237Np; 222Rn (and also 218Rn in a rare branch) is an intermediate step in the decay chain of 238U;[1] 219Rn is an intermediate step in the decay chain of 235U; and 220Rn occurs in the decay chain of 232Th.

List of isotopes

|-| 193Rn[2] || style="text-align:right" | 86| style="text-align:right" | 107| | 1.15(27) ms| α| 189Po| ||-| 194Rn[2] || style="text-align:right" | 86| style="text-align:right" | 108| | 0.78(16) ms| α| 190Po| 0+||-| 195Rn|| style="text-align:right" | 86| style="text-align:right" | 109| 195.00544(5)| [3] | α| 191Po| (3/2−)||-| style="text-indent:1em" | 195mRn|| colspan="3" style="text-indent:2em" | ~59 keV| [3] | α| 191Po| (13/2+)||-| rowspan=2|196Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 110| rowspan=2|196.002115(16)| rowspan=2|4.7(11) ms
[4.4(+13−9) ms]| α| 192Po| rowspan=2|0+| rowspan=2||-| β+ (rare)| 196At|-| rowspan=2|197Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 111| rowspan=2|197.00158(7)| rowspan=2|66(16) ms
[65(+23−14) ms]| α| 193Po| rowspan=2|3/2−#| rowspan=2||-| β+ (rare)| 197At|-| rowspan=2 style="text-indent:1em" | 197mRn| rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 200(60)# keV| rowspan=2|21(5) ms
[19(+8−4)&nbsp;ms]| α| 193Po| rowspan=2|(13/2+)| rowspan=2||-| β+ (rare)| 197At|-| rowspan=2|198Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 112| rowspan=2|197.998679(14)| rowspan=2|65(3) ms| α (99%)| 194Po| rowspan=2|0+| rowspan=2||-| β+ (1%)| 198At|-| rowspan=2|199Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 113| rowspan=2|198.99837(7)| rowspan=2|620(30) ms| α (94%)| 195Po| rowspan=2|3/2−#| rowspan=2||-| β+ (6%)| 199At|-| rowspan=2 style="text-indent:1em" | 199mRn| rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 180(70) keV| rowspan=2|320(20) ms| α (97%)| 195Po| rowspan=2|13/2+#| rowspan=2||-| β+ (3%)| 199At|-| rowspan=2|200Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 114| rowspan=2|199.995699(14)| rowspan=2|0.96(3) s| α (98%)| 196Po| rowspan=2|0+| rowspan=2||-| β+ (2%)| 200At|-| rowspan=2|201Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 115| rowspan=2|200.99563(8)| rowspan=2|7.0(4) s| α (80%)| 197Po| rowspan=2|(3/2−)| rowspan=2||-| β+ (20%)| 201At|-| rowspan=3 style="text-indent:1em" | 201mRn| rowspan=3|| rowspan=3 colspan="3" style="text-indent:2em" | 280(90)# keV| rowspan=3|3.8(1) s| α (90%)| 197Po| rowspan=3|(13/2+)| rowspan=3||-| β+ (10%)| 201At|-| IT (<1%)| 201Rn|-| rowspan=2|202Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 116| rowspan=2|201.993263(19)| rowspan=2|9.94(18) s| α (85%)| 198Po| rowspan=2|0+| rowspan=2||-| β+ (15%)| 202At|-| rowspan=2|203Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 117| rowspan=2|202.993387(25)| rowspan=2|44.2(16) s| α (66%)| 199Po| rowspan=2|(3/2−)| rowspan=2||-| β+ (34%)| 203At|-| rowspan=2 style="text-indent:1em" | 203mRn| rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 363(4) keV| rowspan=2|26.7(5) s| α (80%)| 199Po| rowspan=2|13/2(+)| rowspan=2||-| β+ (20%)| 203At|-| rowspan=2|204Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 118| rowspan=2|203.991429(16)| rowspan=2|1.17(18) min| α (73%)| 200Po| rowspan=2|0+| rowspan=2||-| β+ (27%)| 204At|-| rowspan=2|205Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 119| rowspan=2|204.99172(5)| rowspan=2|170(4) s| β+ (77%)| 205At| rowspan=2|5/2−| rowspan=2||-| α (23%)| 201Po|-| rowspan=2|206Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 120| rowspan=2|205.990214(16)| rowspan=2|5.67(17) min| α (62%)| 202Po| rowspan=2|0+| rowspan=2||-| β+ (38%)| 206At|-| rowspan=2|207Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 121| rowspan=2|206.990734(28)| rowspan=2|9.25(17) min| β+ (79%)| 207At| rowspan=2|5/2−| rowspan=2||-| α (21%)| 203Po|-| style="text-indent:1em" | 207mRn|| colspan="3" style="text-indent:2em" | 899.0(10) keV| 181(18) μs||| (13/2+)||-| rowspan=2|208Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 122| rowspan=2|207.989642(12)| rowspan=2|24.35(14) min| α (62%)| 204Po| rowspan=2|0+| rowspan=2||-| β+ (38%)| 208At|-| rowspan=2|209Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 123| rowspan=2|208.990415(21)| rowspan=2|28.5(10) min| β+ (83%)| 209At| rowspan=2|5/2−| rowspan=2||-| α (17%)| 205Po|-| style="text-indent:1em" | 209m1Rn|| colspan="3" style="text-indent:2em" | 1173.98(13) keV| 13.4(13) μs||| 13/2+||-| style="text-indent:1em" | 209m2Rn|| colspan="3" style="text-indent:2em" | 3636.78(23) keV| 3.0(3) μs||| (35/2+)||-| rowspan=2|210Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 124| rowspan=2|209.989696(9)| rowspan=2|2.4(1) h| α (96%)| 206Po| rowspan=2|0+| rowspan=2||-| β+ (4%)| 210At|-| style="text-indent:1em" | 210m1Rn|| colspan="3" style="text-indent:2em" | 1690(15) keV| 644(40) ns||| 8+#||-| style="text-indent:1em" | 210m2Rn|| colspan="3" style="text-indent:2em" | 3837(15) keV| 1.06(5) μs||| (17)−||-| style="text-indent:1em" | 210m3Rn|| colspan="3" style="text-indent:2em" | 6493(15) keV| 1.04(7) μs||| (22)+||-| rowspan=2|211Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 125| rowspan=2|210.990601(7)| rowspan=2|14.6(2) h| α (72.6%)| 207Po| rowspan=2|1/2−| rowspan=2||-| β+ (27.4%)| 211At|-|212Rn||style="text-align:right" | 86|style="text-align:right" | 126|211.990704(3)|23.9(12) min| α| 208Po|0+||-| 213Rn|| style="text-align:right" | 86| style="text-align:right" | 127| 212.993883(6)| 19.5(1) ms| α| 209Po| (9/2+)||-|214Rn|| style="text-align:right" | 86|style="text-align:right" | 128|213.995363(10)|0.27(2) μs| α| 210Po|0+||-| style="text-indent:1em" | 214mRn|| colspan="3" style="text-indent:2em" | 4595.4 keV| 245(30) ns|IT|214Rn| (22+)||-| 215Rn|| style="text-align:right" | 86| style="text-align:right" | 129| 214.998745(8)| 2.30(10) μs| α| 211Po| 9/2+||-| 216Rn|| style="text-align:right" | 86| style="text-align:right" | 130| 216.000274(8)| 45(5) μs| α| 212Po| 0+||-| 217Rn|| style="text-align:right" | 86| style="text-align:right" | 131| 217.003928(5)| 0.54(5) ms| α| 213Po| 9/2+| Trace[4] |-| 218Rn|| style="text-align:right" | 86| style="text-align:right" | 132| 218.0056013(25)| 35(5) ms| α| 214Po| 0+| Trace[5] |-| 219Rn| Actinon
Actinium emanation| style="text-align:right" | 86| style="text-align:right" | 133| 219.0094802(27)| 3.96(1) s| α| 215Po| 5/2+| Trace[6] |-|220Rn|Thoron
Thorium emanation| style="text-align:right" | 86| style="text-align:right" | 134|220.0113940(24)|55.6(1) s| α[7] | 216Po|0+|Trace[8] |-| rowspan=2|221Rn| rowspan=2|| rowspan=2 style="text-align:right" | 86| rowspan=2 style="text-align:right" | 135| rowspan=2|221.015537(6)| rowspan=2|25.7(5) min| β (78%)| 221Fr| rowspan=2|7/2(+)| rowspan=2|Trace[4] |-| α (22%)| 217Po|-| 222Rn| Radon[9]
Radium emanation
Emanation
Emanon
Niton| style="text-align:right" | 86| style="text-align:right" | 136| 222.0175777(25)| 3.8235(3) d| α[10] | 218Po| 0+| Trace|-| 223Rn|| style="text-align:right" | 86| style="text-align:right" | 137| 223.02179(32)#| 24.3(4) min| β| 223Fr| 7/2||-| 224Rn|| style="text-align:right" | 86| style="text-align:right" | 138| 224.02409(32)#| 107(3) min| β| 224Fr| 0+||-| 225Rn|| style="text-align:right" | 86| style="text-align:right" | 139| 225.02844(32)#| 4.66(4) min| β| 225Fr| 7/2−||-| 226Rn|| style="text-align:right" | 86| style="text-align:right" | 140| 226.03089(43)#| 7.4(1) min| β| 226Fr| 0+||-| 227Rn|| style="text-align:right" | 86| style="text-align:right" | 141| 227.03541(45)#| 20.8(7) s| β| 227Fr| 5/2(+#)||-| 228Rn|| style="text-align:right" | 86| style="text-align:right" | 142| 228.03799(44)#| 65(2) s| β| 228Fr| 0+||-| 229Rn[11] || style="text-align:right" | 86| style="text-align:right" | 143| 229.0426536(141)| 12(1) s| β| 229Fr|||-| 230Rn[12] || style="text-align:right" | 86| style="text-align:right" | 144| | | β| 230Fr| 0+||-| 231Rn[13] || style="text-align:right" | 86| style="text-align:right" | 145| | | β| 231Fr| |

References

Notes and References

  1. Web site: Decay Chain .
  2. Andreyev . A. N. . Antalic . S. . Huyse . M. . Duppen . P. Van . Ackermann . D. . Bianco . L. . Cullen . D. M. . Darby . I. G. . Franchoo . S. . Heinz . S. . Heßberger . F. P. . Hofmann . S. . Kojouharov . I. . Kindler . B. . Leppänen . A.-P. . Lommel . B. . Mann . R. . Münzenberg . G. . Pakarinen . J. . Page . R. D. . Ressler . J. J. . Saro . S. . Streicher . B. . Sulignano . B. . Thomson . J. . Wyss . R. . α decay of the new isotopes 193,194Rn . Physical Review C . 6 December 2006 . 74 . 6 . 064303 . 10.1103/PhysRevC.74.064303 . 0556-2813.
  3. Kettunen . H. . Uusitalo . J. . Leino . M. . Jones . P. . Eskola . K. . Greenlees . P. T. . Helariutta . K. . Julin . R. . Juutinen . S. . Kankaanpää . H. . Kuusiniemi . P. . Muikku . M. . Nieminen . P. . Rahkila . P. . α decay studies of the nuclides 195Rn and 196Rn . Physical Review C . 16 March 2001 . 63 . 4 . 044315 . 10.1103/PhysRevC.63.044315 . 2001PhRvC..63d4315K . 11 June 2023 . en . 0556-2813.
  4. Intermediate decay product of 237Np
  5. Intermediate decay product of 238U
  6. Intermediate decay product of 235U
  7. Theorized to also undergo ββ dacay to 220Ra
  8. Intermediate decay product of 232Th
  9. Source of element's name
  10. Theorized to also undergo ββ decay to 222Ra
  11. Neidherr . D. . Audi . G. . D. . Beck . K. . Baum . Ch. . Böhm . M. . Breitenfeldt . R. B. . Cakirli . R. F. . Casten . S. . George . F. . Herfurth . A. . Herlert . A. . Kellerbauer . M. . Kowalska . D. . Lunney . E. . Minaya-Ramirez . S. . Naimi . E. . Noah . L. . Penescu . M. . Rosenbusch . S. . Schwarz . L. . Schweikhard . T. . Stora . 19 March 2009 . Discovery of 229Rn and the Structure of the Heaviest Rn and Ra Isotopes from Penning-Trap Mass Measurements . Physical Review Letters . 102 . 11 . 112501–1–112501–5 . 10.1103/PhysRevLett.102.112501. 19392194 . 2009PhRvL.102k2501N .
  12. Web site: Nudat 2. 2019-04-22. 2020-08-02. https://web.archive.org/web/20200802014710/https://www.nndc.bnl.gov/nudat2/reCenter.jsp?z=86&n=144. dead.
  13. https://www.nndc.bnl.gov/nudat2/reCenter.jsp?z=86&n=145