Isotopes of lutetium explained

Naturally occurring lutetium (71Lu) is composed of one stable isotope 175Lu (97.41% natural abundance) and one long-lived radioisotope, 176Lu with a half-life of 37 billion years (2.59% natural abundance). Forty radioisotopes have been characterized, with the most stable, besides 176Lu, being 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than half an hour. This element also has 18 meta states, with the most stable being 177mLu (t1/2 160.4 days), 174mLu (t1/2 142 days) and 178mLu (t1/2 23.1 minutes).

The known isotopes of lutetium range in mass number from 149 to 190. The primary decay mode before the most abundant stable isotope, 175Lu, is electron capture (with some alpha and positron emission), and the primary mode after is beta emission. The primary decay products before 175Lu are isotopes of ytterbium and the primary products after are isotopes of hafnium. All isotopes of lutetium are either radioactive or, in the case of 175Lu, observationally stable, meaning that 175Lu is predicted to be radioactive but no actual decay has been observed.[1]

List of isotopes

|-| 149Lu[2] | style="text-align:right" | 71| style="text-align:right" | 78| || | | p| 148Yb| 11/2−||-| rowspan=2|150Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 79| rowspan=2|149.97323(54)#| rowspan=2 data-sort-value='3(ms) 043.5' | 43(5) ms| p (80%)| 149Yb| rowspan=2|(2+)| rowspan=2||-| β+ (20%)| 150Yb|-| style="text-indent:1em" | 150mLu| colspan="3" style="text-indent:2em" | 34(15) keV| data-sort-value='2(μs) 080' | 80(60) μs
[30(+95−15)&nbsp;μs]| [proton emission|p | <sup>149</sup>Yb | (1, 2) | |- | rowspan=2|<sup>151</sup>Lu | rowspan=2 style="text-align:right" | 71 | rowspan=2 style="text-align:right" | 80 | rowspan=2|150.96757682 | rowspan=2 data-sort-value='3(ms) 080.6' | 80.6(5)&nbsp;ms | p (63.4%) | <sup>150</sup>Yb | rowspan=2|(11/2−) | rowspan=2| |- | β<sup>+</sup> (36.6%) | <sup>151</sup>Yb |- | style="text-indent:1em" | <sup>151m</sup>Lu | colspan="3" style="text-indent:2em" | 77(5)&nbsp;keV | data-sort-value='2(μs) 016' | 16(1)&nbsp;μs | [[proton emission|p]]| 150Yb| (3/2+)||-| rowspan=2|152Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 81| rowspan=2|151.96412(21)#| rowspan=2 data-sort-value='3(ms) 650' | 650(70) ms| β+ (85%)| 152Yb| rowspan=2|(5−, 6−)| rowspan=2||-| β+, p (15%)| 151Tm|-| rowspan=2|153Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 82| rowspan=2|152.95877(22)| rowspan=2 data-sort-value='4(s) 000.9' | 0.9(2) s| α (70%)| 149Tm| rowspan=2|11/2−| rowspan=2||-| β+ (30%)| 153Yb|-| style="text-indent:1em" | 153m1Lu| colspan="3" style="text-indent:2em" | 80(5) keV| data-sort-value='4(s) 001' | 1# s| IT| 153Lu| 1/2+||-| style="text-indent:1em" | 153m2Lu| colspan="3" style="text-indent:2em" | 2502.5(4) keV| data-sort-value='2(μs) 000.1' | >0.1 μs| IT| 153Lu| 23/2−||-| style="text-indent:1em" | 153m3Lu| colspan="3" style="text-indent:2em" | 2632.9(5) keV| data-sort-value='2(μs) 015' | 15(3) μs| IT| 153m2Lu| 27/2−||-| rowspan=2|154Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 83| rowspan=2|153.95752(22)#| rowspan=2 data-sort-value='4(s) 001' | 1# s| β+?| 154Yb| rowspan=2|(2−)| rowspan=2||-| α?| 150Tm|-| rowspan=4 style="text-indent:1em" | 154m1Lu| rowspan=4 colspan="3" style="text-indent:2em" | 58(13) keV| rowspan=4 data-sort-value='4(s) 001.12' | 1.12(8) s| β+| 154Yb| rowspan=4|(9+)| rowspan=4||-| β+p?| 153Tm|-| β+α?| 150Er|-| α?| 150Tm|-| style="text-indent:1em" | 154m2Lu| colspan="3" style="text-indent:2em" | >2562 keV| data-sort-value='2(μs) 035' | 35(3) μs| IT| 154Lu| (17+)||-| rowspan=2|155Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 84| rowspan=2|154.954316(22)| rowspan=2 data-sort-value='3(ms) 068.6' | 68.6(16) ms| α (76%)| 151Tm| rowspan=2|(11/2−)| rowspan=2||-| β+ (24%)| 155Yb|-| rowspan=2 style="text-indent:1em" | 155m1Lu| rowspan=2 colspan="3" style="text-indent:2em" | 20(6) keV| rowspan=2 data-sort-value='3(ms) 138' | 138(8) ms| α (88%)| 151Tm| rowspan=2|(1/2+)| rowspan=2||-| β+ (12%)| 155Yb|-| style="text-indent:1em" | 155m2Lu| colspan="3" style="text-indent:2em" | 1781.0(20) keV| data-sort-value='3(ms) 002.7' | 2.70(3) ms||| (25/2−)||-| rowspan=2|156Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 85| rowspan=2|155.95303(8)| rowspan=2 data-sort-value='3(ms) 494' | 494(12) ms| α (95%)| 152Tm| rowspan=2|(2)−| rowspan=2||-| β+ (5%)| 156Yb|-| rowspan=2 style="text-indent:1em" | 156mLu| rowspan=2 colspan="3" style="text-indent:2em" | 220(80)# keV| rowspan=2 data-sort-value='3(ms) 198' | 198(2) ms| α (94%)| 152Tm| rowspan=2|(9)+| rowspan=2||-| β+ (6%)| 156Yb|-| rowspan=2|157Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 86| rowspan=2|156.950098(20)| rowspan=2 data-sort-value='4(s) 006.8'| 6.8(18) s| β+| 157Yb| rowspan=2|(1/2+, 3/2+)| rowspan=2||-| α| 153Tm|-| rowspan=2 style="text-indent:1em" | 157mLu| rowspan=2 colspan="3" style="text-indent:2em" | 21.0(20) keV| rowspan=2 data-sort-value='4(s) 004.79' | 4.79(12) s| β+ (94%)| 157Yb| rowspan=2|(11/2−)| rowspan=2||-| α (6%)| 153Tm|-| rowspan=2|158Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 87| rowspan=2|157.949313(16)| rowspan=2 data-sort-value='4(s) 010.6' | 10.6(3) s| β+ (99.09%)| 158Yb| rowspan=2|2−| rowspan=2||-| α (.91%)| 154Tm|-| rowspan=2|159Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 88| rowspan=2|158.94663(4)| rowspan=2 data-sort-value='4(s) 012' | 12.1(10) s| β+ (99.96%)| 159Yb| rowspan=2|1/2+#| rowspan=2||-| α (.04%)| 155Tm|-| style="text-indent:1em" | 159mLu| colspan="3" style="text-indent:2em" | 100(80)# keV| data-sort-value='4(s) 010' | 10# s||| 11/2−#||-| rowspan=2|160Lu| rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 89| rowspan=2|159.94603(6)| rowspan=2 data-sort-value='4(s) 036' | 36.1(3) s| β+| 160Yb| rowspan=2|2−#| rowspan=2||-| α (10−4%)| 156Tm|-| style="text-indent:1em" | 160mLu| colspan="3" style="text-indent:2em" | 0(100)# keV| data-sort-value='4(s) 040' | 40(1) s|||||-| 161Lu| style="text-align:right" | 71| style="text-align:right" | 90| 160.94357(3)| data-sort-value='4(s) 077' | 77(2) s| β+| 161Yb| 1/2+||-| style="text-indent:1em" | 161mLu| colspan="3" style="text-indent:2em" | 166(18) keV| data-sort-value='3(ms) 007.3' | 7.3(4) ms| IT| 161Lu| (9/2−)||-| 162Lu| style="text-align:right" | 71| style="text-align:right" | 91| 161.94328(8)| data-sort-value='5(min) 01.37' | 1.37(2) min| β+| 162Yb| (1−)||-| rowspan=2 style="text-indent:1em" | 162m1Lu| rowspan=2 colspan="3" style="text-indent:2em" | 120(200)# keV| rowspan=2 data-sort-value='5(min) 01.5' | 1.5 min| β+| 162Yb| rowspan=2|4−#| rowspan=2||-| IT (rare)| 162Lu|-| style="text-indent:1em" | 162m2Lu| colspan="3" style="text-indent:2em" | 300(200)# keV| data-sort-value='5(min) 01.9' | 1.9 min|||||-| 163Lu| style="text-align:right" | 71| style="text-align:right" | 92| 162.94118(3)| data-sort-value='5(min) 03.97' | 3.97(13) min| β+| 163Yb| 1/2(+)||-| 164Lu| style="text-align:right" | 71| style="text-align:right" | 93| 163.94134(3)| data-sort-value='5(min) 03.14' | 3.14(3) min| β+| 164Yb| 1(−)||-| 165Lu| style="text-align:right" | 71| style="text-align:right" | 94| 164.939407(28)| data-sort-value='5(min) 10.74' | 10.74(10) min| β+| 165Yb| 1/2+||-| 166Lu| style="text-align:right" | 71| style="text-align:right" | 95| 165.93986(3)| data-sort-value='5(min) 02.65' | 2.65(10) min| β+| 166Yb| (6−)||-| rowspan=2 style="text-indent:1em" | 166m1Lu| rowspan=2 colspan="3" style="text-indent:2em" | 34.37(5) keV| rowspan=2 data-sort-value='5(min) 01.41' | 1.41(10) min| β+ (58%)| 166Yb| rowspan=2|3(−)| rowspan=2||-| IT (42%)| 166Lu|-| style="text-indent:1em" | 166m2Lu| colspan="3" style="text-indent:2em" | 42.9(5) keV| data-sort-value='5(min) 02.12' | 2.12(10) min||| 0(−)||-| 167Lu| style="text-align:right" | 71| style="text-align:right" | 96| 166.93827(3)| data-sort-value='5(min) 51.5' | 51.5(10) min| β+| 167Yb| 7/2+||-| style="text-indent:1em" | 167mLu| colspan="3" style="text-indent:2em" | 0(30)# keV| data-sort-value='5(min) 01' | >1 min||| 1/2(−#)||-| 168Lu| style="text-align:right" | 71| style="text-align:right" | 97| 167.93874(5)| data-sort-value='5(min) 05.5' | 5.5(1) min| β+| 168Yb| (6−)||-| rowspan=2 style="text-indent:1em" | 168mLu| rowspan=2 colspan="3" style="text-indent:2em" | 180(110) keV| rowspan=2 data-sort-value='5(min) 06.7' | 6.7(4) min| β+ (95%)| 168Yb| rowspan=2|3+| rowspan=2||-| IT (5%)| 168Lu|-| 169Lu| style="text-align:right" | 71| style="text-align:right" | 98| 168.937651(6)| data-sort-value='6(h) 34.06' | 34.06(5) h| β+| 169Yb| 7/2+||-| style="text-indent:1em" | 169mLu| colspan="3" style="text-indent:2em" | 29.0(5) keV| data-sort-value='4(s) 160' | 160(10) s| IT| 169Lu| 1/2−||-| 170Lu| style="text-align:right" | 71| style="text-align:right" | 99| 169.938475(18)| data-sort-value='7(d) 002.012' | 2.012(20) d| β+| 170Yb| 0+||-| style="text-indent:1em" | 170mLu| colspan="3" style="text-indent:2em" | 92.91(9) keV| data-sort-value='3(ms) 670' | 670(100) ms| IT| 170Lu| (4)−||-| 171Lu| style="text-align:right" | 71| style="text-align:right" | 100| 170.9379131(30)| data-sort-value='7(d) 008.24' | 8.24(3) d| β+| 171Yb| 7/2+||-| style="text-indent:1em" | 171mLu| colspan="3" style="text-indent:2em" | 71.13(8) keV| data-sort-value='4(s) 079' | 79(2) s| IT| 171Lu| 1/2−||-| 172Lu| style="text-align:right" | 71| style="text-align:right" | 101| 171.939086(3)| data-sort-value='7(d) 006.7' | 6.70(3) d| β+| 172Yb| 4−||-| style="text-indent:1em" | 172m1Lu| colspan="3" style="text-indent:2em" | 41.86(4) keV| data-sort-value='5(min) 03.7' | 3.7(5) min| IT| 172Lu| 1−||-| style="text-indent:1em" | 172m2Lu| colspan="3" style="text-indent:2em" | 65.79(4) keV| data-sort-value='2(μs) 000.332' | 0.332(20) μs||| (1)+||-| style="text-indent:1em" | 172m3Lu| colspan="3" style="text-indent:2em" | 109.41(10) keV| data-sort-value='2(μs) 440' | 440(12) μs||| (1)+||-| style="text-indent:1em" | 172m4Lu| colspan="3" style="text-indent:2em" | 213.57(17) keV| data-sort-value='1(ns) 150' | 150 ns||| (6−)||-| 173Lu| style="text-align:right" | 71| style="text-align:right" | 102| 172.9389306(26)| data-sort-value='8(a) 1.37' | 1.37(1) y| EC| 173Yb| 7/2+||-| style="text-indent:1em" | 173mLu| colspan="3" style="text-indent:2em" | 123.672(13) keV| data-sort-value='2(μs) 074.2' | 74.2(10) μs||| 5/2−||-| 174Lu| style="text-align:right" | 71| style="text-align:right" | 103| 173.9403375(26)| data-sort-value='8(a) 3.31' | 3.31(5) y| β+| 174Yb| (1)−||-| rowspan=2 style="text-indent:1em" | 174m1Lu| rowspan=2 colspan="3" style="text-indent:2em" | 170.83(5) keV| rowspan=2 data-sort-value='7(d) 142' | 142(2) d| IT (99.38%)| 174Lu| rowspan=2|6−| rowspan=2||-| EC (.62%)| 174Yb|-| style="text-indent:1em" | 174m2Lu| colspan="3" style="text-indent:2em" | 240.818(4) keV| data-sort-value='1(ns) 395' | 395(15) ns||| (3+)||-| style="text-indent:1em" | 174m3Lu| colspan="3" style="text-indent:2em" | 365.183(6) keV| data-sort-value='1(ns) 145' | 145(3) ns||| (4−)||-| 175Lu| style="text-align:right" | 71| style="text-align:right" | 104| 174.9407718(23)| colspan=3 align=center data-sort-value='9' |Observationally stable[3] | 7/2+| 0.9741(2)|-| style="text-indent:1em" | 175m1Lu| colspan="3" style="text-indent:2em" | 1392.2(6) keV| data-sort-value='2(μs) 984' | 984(30) μs||| (19/2+)||-| style="text-indent:1em" | 175m2Lu| colspan="3" style="text-indent:2em" | 353.48(13) keV| data-sort-value='2(μs) 001.49' | 1.49(7) μs||| 5/2−||-| rowspan=2|176Lu[4] [5] | rowspan=2 style="text-align:right" | 71| rowspan=2 style="text-align:right" | 105| rowspan=2|175.9426863(23)| rowspan=2|3.701(17)×1010 y| β| 176Hf| rowspan=2|7−| rowspan=2|0.0259(2)|-| EC (0.45(26)%)| 176Yb|-| rowspan=2 style="text-indent:1em" | 176mLu| rowspan=2 colspan="3" style="text-indent:2em" | 122.855(6) keV| rowspan=2 data-sort-value='6(h) 03.66' | 3.664(19) h| β (99.9%)| 176Hf| rowspan=2|1−| rowspan=2||-| EC (.095%)| 176Yb|-| 177Lu| style="text-align:right" | 71| style="text-align:right" | 106| 176.9437581(23)| 6.6475(20) d| β| 177Hf| 7/2+||-| style="text-indent:1em" | 177m1Lu| colspan="3" style="text-indent:2em" | 150.3967(10) keV| 130(3) ns||| 9/2−||-| style="text-indent:1em" | 177m2Lu| colspan="3" style="text-indent:2em" | 569.7068(16) keV| 155(7) μs||| 1/2+||-| rowspan=2 style="text-indent:1em" | 177m3Lu| rowspan=2 colspan="3" style="text-indent:2em" | 970.1750(24) keV| rowspan=2 data-sort-value='7(d) 160.44' | 160.44(6) d| β (78.3%)| 177Hf| rowspan=2|23/2−| rowspan=2||-| IT (21.7%)| 177Lu|-| style="text-indent:1em" | 177m4Lu| colspan="3" style="text-indent:2em" | 3900(10) keV| 7(2) min
[6(+3−2)&nbsp;min]||| 39/2−||-| 178Lu| style="text-align:right" | 71| style="text-align:right" | 107| 177.945955(3)| 28.4(2) min| β| 178Hf| 1(+)||-| style="text-indent:1em" | 178mLu| colspan="3" style="text-indent:2em" | 123.8(26) keV| 23.1(3) min| β| 178Hf| 9(−)||-| 179Lu| style="text-align:right" | 71| style="text-align:right" | 108| 178.947327(6)| 4.59(6) h| β| 179Hf| 7/2(+)||-| style="text-indent:1em" | 179mLu| colspan="3" style="text-indent:2em" | 592.4(4) keV| 3.1(9) ms| IT| 179Lu| 1/2(+)||-| 180Lu| style="text-align:right" | 71| style="text-align:right" | 109| 179.94988(8)| 5.7(1) min| β| 180Hf| 5+||-| style="text-indent:1em" | 180m1Lu| colspan="3" style="text-indent:2em" | 13.9(3) keV| ~1 s| IT| 180Lu| 3−||-| style="text-indent:1em" | 180m2Lu| colspan="3" style="text-indent:2em" | 624.0(5) keV| ≥1 ms||| (9−)||-| 181Lu| style="text-align:right" | 71| style="text-align:right" | 110| 180.95197(32)#| 3.5(3) min| β| 181Hf| (7/2+)||-| 182Lu| style="text-align:right" | 71| style="text-align:right" | 111| 181.95504(21)#| 2.0(2) min| β| 182Hf| (0,1,2)||-| 183Lu| style="text-align:right" | 71| style="text-align:right" | 112| 182.95736(9)| 58(4) s| β| 183Hf| (7/2+)||-| 184Lu| style="text-align:right" | 71| style="text-align:right" | 113| 183.96103(22)#| 20(3) s| β| 184Hf| (3+)||-| 185Lu| style="text-align:right" | 71| style="text-align:right" | 114| 184.96354(32)#| 20# s| | | 7/2+#||-| 186Lu| style="text-align:right" | 71| style="text-align:right" | 115| 185.96745(43)#| 6# s| | | ||-| 187Lu| style="text-align:right" | 71| style="text-align:right" | 116| 186.97019(43)#| 7# s| | | 7/2+#||-| 188Lu| style="text-align:right" | 71| style="text-align:right" | 117| 187.97443(43)#| 1# s| | | ||-| 189Lu[6] | style="text-align:right" | 71| style="text-align:right" | 118| || | | ||-| 190Lu[7] | style="text-align:right" | 71| style="text-align:right" | 119| || | | |

Lutetium-177

See main article: Lutetium (<sup>177</sup>Lu) chloride. Lutetium (177Lu) chloride, sold under the brand name Lumark among others, is used for radiolabeling other medicines, either as an anti-cancer therapy or for scintigraphy (medical radio-imaging). Its most common side effects are anaemia (low red blood cell counts), thrombocytopenia (low blood platelet counts), leucopenia (low white blood cell counts), lymphopenia (low levels of lymphocytes, a particular type of white blood cell), nausea (feeling sick), vomiting and mild and temporary hair loss.[8] [9]

References

  1. Belli . P. . Bernabei . R. . Danevich . F. A. . Incicchitti . A. . Tretyak . V. I. . 3 . Experimental searches for rare alpha and beta decays . European Physical Journal A . 2019 . 55 . 8 . 140–1–140–7 . 10.1140/epja/i2019-12823-2 . 1434-601X . 1908.11458. 2019EPJA...55..140B . 201664098 .
  2. Auranen . K. . Nanosecond-Scale Proton Emission from Strongly Oblate-Deformed 149Lu . Physical Review Letters . 16 March 2022 . 128 . 11 . 2501 . 10.1103/PhysRevLett.128.112501 . 35363028 . 2022PhRvL.128k2501A . 247855967 . PhysRevLett.
  3. Believed to undergo α decay to 171Tm
  4. [Primordial nuclide|primordial]
  5. Used in lutetium-hafnium dating
  6. K. . Haak . O. B. . Tarasov . P. . Chowdhury . et al. . Production and discovery of neutron-rich isotopes by fragmentation of 198Pt . 2023 . Physical Review C . 108 . 34608 . 034608 . 10.1103/PhysRevC.108.034608. 2023PhRvC.108c4608H . 261649436 .
  7. O. B. . Tarasov . A. . Gade . K. . Fukushima . et al. . Observation of New Isotopes in the Fragmentation of 198Pt at FRIB . Physical Review Letters . 132 . 072501 . 2024 . 10.1103/PhysRevLett.132.072501.
  8. Web site: Lumark EPAR . European Medicines Agency . 17 September 2018 . 7 May 2020. Text was copied from this source for which copyright belongs to the European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  9. Web site: EndolucinBeta EPAR . European Medicines Agency (EMA) . 17 September 2018 . 7 May 2020. Text was copied from this source for which copyright belongs to the European Medicines Agency. Reproduction is authorized provided the source is acknowledged.