Isotopes of fermium explained

Fermium (100Fm) is a synthetic element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be discovered (in fallout from nuclear testing) was 255Fm in 1952. 250Fm was independently synthesized shortly after the discovery of 255Fm. There are 20 known radioisotopes ranging in atomic mass from 241Fm to 260Fm (260Fm is unconfirmed), and 4 nuclear isomers, 247mFm, 250mFm, 251mFm, and 253mFm. The longest-lived isotope is 257Fm with a half-life of 100.5 days, and the longest-lived isomer is 247mFm with a half-life of 5.1 seconds.

List of isotopes

|-| rowspan=2|241Fm| rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 141| rowspan=2|241.07421(32)#| rowspan=2|730(60) μs| SF| (various)| rowspan=2|5/2+#|-| α (<14%)| 237Cf|-| 242Fm| style="text-align:right" | 100| style="text-align:right" | 142| 242.07343(43)#| <4 μs[1] | SF| (various)| 0+|-| rowspan=3|243Fm[2] | rowspan=3 style="text-align:right" | 100| rowspan=3 style="text-align:right" | 143| rowspan=3|243.07447(23)#| rowspan=3|231(9) ms| α (91%)| 239Cf| rowspan=3|(7/2−)|-| SF (9%)| (various)|-| β+ (<10%)| 243Es|-| rowspan=2|244Fm[1] | rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 144| rowspan=2|244.07404(22)#| rowspan=2|3.12(8) ms| SF| (various)| rowspan=2|0+|-| α (<1%)| 240Cf|-| rowspan=3|245Fm[3] | rowspan=3 style="text-align:right" | 100| rowspan=3 style="text-align:right" | 145| rowspan=3|245.07535(21)#| rowspan=3|5.5(7) s| α (88.5%)| 241Cf| rowspan=3|(1/2+)|-| β+ (11.5%)| 245Es|-| SF (<0.3%)[2] | (various)|-| rowspan=3|246Fm[4] | rowspan=3 style="text-align:right" | 100| rowspan=3 style="text-align:right" | 146| rowspan=3|246.075350(17)| rowspan=3|1.54(4) s| α (93.2%)| 242Cf| rowspan=3|0+|-| SF (6.8%)| (various)|-| β+ (<1.3%)| 246Es|-| rowspan=2|247Fm[5] | rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 147| rowspan=2|247.07695(12)#| rowspan=2|31(1) s| α (64%)| 243Cf| rowspan=2|(7/2+)|-| β+ (36%)| 247Es|-| rowspan=3 style="text-indent:1em" | 247mFm| rowspan=3 colspan="3" style="text-indent:2em" | 45(7) keV| rowspan=3| 5.1(2) s| α (88%)| 243Cf| rowspan=3|(1/2+)|-| IT (12%)| 247Fm|-| β+?| 247Es|-| rowspan=3|248Fm| rowspan=3 style="text-align:right" | 100| rowspan=3 style="text-align:right" | 148| rowspan=3|248.077186(9)| rowspan=3|35.1(8) s| α (93%)| 244Cf| rowspan=3|0+|-| β+ (7%)| 248Es|-| SF (.10%)| (various)|-| rowspan=2|249Fm| rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 149| rowspan=2|249.078928(7)| rowspan=2|1.6(1) min| β+ (84.4%)| 249Es| rowspan=2|(7/2+)|-| α (15.6%)[6] | 245Cf|-| rowspan=3|250Fm| rowspan=3 style="text-align:right" | 100| rowspan=3 style="text-align:right" | 150| rowspan=3|250.079521(9)| rowspan=3|30.4(15) min| α (90%)| 246Cf| rowspan=3|0+|-| EC (10%)| 250Es|-| SF (6.9×10−3%)| (various)|-| style="text-indent:1em" | 250mFm| colspan="3" style="text-indent:2em" | 1199.2(10) keV| 1.92(5) s| IT| 250Fm| (8−)|-| rowspan=2|251Fm| rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 151| rowspan=2|251.081540(16)| rowspan=2|5.30(8) h| β+ (98.2%)| 251Es| rowspan=2|(9/2−)|-| α (1.8%)| 247Cf|-| style="text-indent:1em" | 251mFm| colspan="3" style="text-indent:2em" | 200.09(11) keV| 21.1(16) μs| IT| 251Fm| (5/2+)|-| rowspan=2|252Fm| rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 152| rowspan=2|252.082467(6)| rowspan=2|25.39(4) h| α (99.99%)| 248Cf| rowspan=2|0+|-| SF (.0023%)| (various)|-| rowspan=2|253Fm| rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 153| rowspan=2|253.085185(4)| rowspan=2|3.00(12) d| EC (88%)| 253Es| rowspan=2|(1/2)+|-| α (12%)| 249Cf|-| style="text-indent:1em" | 253mFm[7] | colspan="3" style="text-indent:2em" | ~351 keV| 0.56(6) μs| IT| 253Fm| (11/2-)|-| rowspan=2|254Fm| rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 154| rowspan=2|254.0868544(30)| rowspan=2|3.240(2) h| α (99.94%)| 250Cf| rowspan=2|0+|-| SF (.0592%)| (various)|-| rowspan=2|255Fm| rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 155| rowspan=2|255.089964(5)| rowspan=2|20.07(7) h| α| 251Cf| rowspan=2|7/2+|-| SF (2.4×10−5%)| (various)|-| rowspan=2|256Fm| rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 156| rowspan=2|256.091774(8)| rowspan=2|157.6(13) min| SF (91.9%)| (various)| rowspan=2|0+|-| α (8.1%)| 252Cf|-| rowspan=2|257Fm[8] | rowspan=2 style="text-align:right" | 100| rowspan=2 style="text-align:right" | 157| rowspan=2|257.095106(7)| rowspan=2|100.5(2) d| α (99.79%)| 253Cf| rowspan=2|(9/2+)|-| SF (.21%)| (various)|-| 258Fm| style="text-align:right" | 100| style="text-align:right" | 158| 258.09708(22)#| 370(14) μs| SF| (various)| 0+|-| 259Fm| style="text-align:right" | 100| style="text-align:right" | 159| 259.1006(3)#| 1.5(3) s| SF| (various)| 3/2+#|-| 260Fm[9] [10] | style="text-align:right" | 100| style="text-align:right" | 160| 260.10281(55)#| 4 ms| SF| (various)| 0+

Chronology of isotope discovery

Isotope Discovered Reaction
241Fm 2008204Pb(40Ar,3n)
242Fm 1975204Pb(40Ar,2n), 206Pb(40Ar,4n)
243Fm1981206Pb(40Ar,3n)
244Fm1967233U(16O,5n)
245Fm1967233U(16O,4n)
246Fm1966235U(16O,5n)
247Fm1967239Pu(12C,4n)
248Fm1958240Pu(12C,4n)
249Fm1960238U(16O,5n)
250Fm1954238U(16O,4n)
251Fm1957249Cf(α,2n)
252Fm1956249Cf(α,n)
253Fm1957252Cf(α,3n)
254Fm1954Neutron capture
255Fm1954Neutron capture
256Fm1955Neutron capture
257Fm1964Neutron capture
258Fm1971257Fm(d,p)
259Fm1980257Fm(t,p)
260Fm?1992?254Es+18O, 22Ne — transfer (EC of 260Md)
260Fm was not confirmed in 1997.

References

  1. Khuyagbaatar . J. . Hofmann . S. . Heßberger . F. P. . Ackermann . D. . Burkhard . H. G. . Heinz . S. . Kindler . B. . Kojouharov . I. . Lommel . B. . Mann . R. . Maurer . J. . Nishio . K. . Novikov . Yu. . Spontaneous fission of neutron-deficient fermium isotopes and the new nucleus 241Fm . The European Physical Journal A . 1 August 2008 . 37 . 2 . 177–183 . 10.1140/epja/i2008-10608-4 . 2008EPJA...37..177K . 18977014 . 24 June 2023 . en . 1434-601X.
  2. Khuyagbaatar . J. . Heßberger . F. P. . Hofmann . S. . Ackermann . D. . Burkhard . H. G. . Heinz . S. . Kindler . B. . Kojouharov . I. . Lommel . B. . Mann . R. . Maurer . J. . Nishio . K. . α decay of Fm 243 143 and Fm 245 145, and of their daughter nuclei . Physical Review C . 12 October 2020 . 102 . 4 . 044312 . 10.1103/PhysRevC.102.044312 . 241259726 . 24 June 2023 . en . 2469-9985.
  3. Tezekbayeva . M. S. . Yeremin . A. V. . Svirikhin . A. I. . Lopez-Martens . A. . Chelnokov . M. L. . Chepigin . V. I. . Isaev . A. V. . Izosimov . I. N. . Karpov . A. V. . Kuznetsova . A. A. . Malyshev . O. N. . Mukhin . R. S. . Popeko . A. G. . Popov . Yu. A. . Rachkov . V. A. . Sailaubekov . B. S. . Sokol . E. A. . Hauschild . K. . Jacob . H. . Chakma . R. . Dorvaux . O. . Forge . M. . Gall . B. . Kessaci . K. . Andel . B. . Antalic . S. . Bronis . A. . Mosat . P. . Study of the production and decay properties of neutron-deficient nobelium isotopes . The European Physical Journal A . 24 March 2022 . 58 . 3 . 52 . 10.1140/epja/s10050-022-00707-9 . 2203.15659 . 2022EPJA...58...52T . 247720708 . 24 June 2023 . en . 1434-601X.
  4. Venhart . M. . Heßberger . F. P. . Ackermann . D. . Antalic . S. . Gray-Jones . C. . Greenlees . P. T. . Heinz . S. . Herzberg . R. -D. . Hofmann . S. . Ketelhut . S. . Kindler . B. . Kojouharov . I. . Leino . M. . Lommel . B. . Mann . R. . Papadakis . P. . Rostron . D. . Rudolph . D. . Šáro . Š. . Sulignano . B. . Decay study of 246Fm at SHIP . The European Physical Journal A . 4 February 2011 . 47 . 2 . 20 . 10.1140/epja/i2011-11020-9 . 2011EPJA...47...20V . 119353521 . 24 June 2023 . en . 1434-601X.
  5. Heßberger . F. P. . Hofmann . S. . Ackermann . D. . Antalic . S. . Kindler . B. . Kojouharov . I. . Kuusiniemi . P. . Leino . M. . Lommel . B. . Mann . R. . Nishio . K. . Popeko . A. G. . Sulignano . B. . Saro . S. . Streicher . B. . Venhart . M. . Yeremin . A. V. . Alpha-gamma decay studies of 255Rf, 251No and 247Fm . The European Physical Journal A - Hadrons and Nuclei . 1 December 2006 . 30 . 3 . 561–569 . 10.1140/epja/i2006-10137-2 . 2006EPJA...30..561H . 123871572 . 24 June 2023 . en . 1434-601X.
  6. Heßberger . F. P. . Antalic . S. . Ackermann . D. . Kalaninová . Z. . Heinz . S. . Hofmann . S. . Streicher . B. . Kindler . B. . Kojouharov . I. . Kuusiniemi . P. . Leino . M. . Lommel . B. . Mann . R. . Nishio . K. . Šáro . Š. . Sulignano . B. . Venhart . M. . Alpha-gamma decay studies of 253No and its daughter products 253Md, 249Fm . The European Physical Journal A . 29 May 2012 . 48 . 5 . 75 . 10.1140/epja/i2012-12075-8 . 2012EPJA...48...75H . 254111959 . 25 June 2023 . en . 1434-601X.
  7. Antalic . S. . Heßberger . F. P. . Ackermann . D. . Heinz . S. . Hofmann . S. . Kalaninová . Z. . Kindler . B. . Khuyagbaatar . J. . Kojouharov . I. . Kuusiniemi . P. . Leino . M. . Lommel . B. . Mann . R. . Nishio . K. . Šáro . Š. . Streicher . B. . Sulignano . B. . Venhart . M. . Isomeric states in 253No and 253Fm . The European Physical Journal A . 20 May 2011 . 47 . 5 . 62 . 10.1140/epja/i2011-11062-y . 2011EPJA...47...62A . 121080273 . 25 June 2023 . en . 1434-601X.
  8. Heaviest nuclide produced via neutron capture
  9. Discovery of this isotope is unconfirmed
  10. Not directly synthesized, occurs as decay product of 260Md