Isotopes of copper explained

Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β decay. 64Cu decays by both β+ and β.

There are at least 10 metastable isomers of copper, including two each for 70Cu and 75Cu. The most stable of these is 68mCu with a half-life of 3.75 minutes. The least stable is 75m2Cu with a half-life of 149 ns.

List of isotopes

|-| rowspan=2|55Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 26| rowspan=2|54.96604(17)| rowspan=2|55.9(15) ms| β+| 55Ni| rowspan=2|3/2−#| rowspan=2|| rowspan=2||-| β+, p?| 54Co|-| rowspan=2|56Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 27| rowspan=2|55.9585293(69)| rowspan=2|80.8(6) ms| β+ (99.60%)| 56Ni| rowspan=2|(4+)| rowspan=2|| rowspan=2||-| β+, p (0.40%)| 55Co|-| 57Cu| style="text-align:right" | 29| style="text-align:right" | 28| 56.94921169(54)| 196.4(7) ms| β+| 57Ni| 3/2−|||-| 58Cu| style="text-align:right" | 29| style="text-align:right" | 29| 57.94453228(60)| 3.204(7) s| β+| 58Ni| 1+|||-| 59Cu| style="text-align:right" | 29| style="text-align:right" | 30| 58.93949671(57)| 81.5(5) s| β+| 59Ni| 3/2−|||-| 60Cu| style="text-align:right" | 29| style="text-align:right" | 31| 59.9373638(17)| 23.7(4) min| β+| 60Ni| 2+|||-| 61Cu| style="text-align:right" | 29| style="text-align:right" | 32| 60.9334574(10)| 3.343(16) h| β+| 61Ni| 3/2−|||-| 62Cu| style="text-align:right" | 29| style="text-align:right" | 33| 61.9325948(07)| 9.672(8) m| β+| 62Ni| 1+|||-| 63Cu| style="text-align:right" | 29| style="text-align:right" | 34| 62.92959712(46)| colspan=3 align=center|Stable| 3/2−| 0.6915(15)| |-| rowspan=2|64Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 35| rowspan=2|63.92976400(46)| rowspan=2|12.7004(13) h| β+ (61.52%)| 64Ni| rowspan=2|1+| rowspan=2|| rowspan=2||-| β (38.48%)| 64Zn|-| 65Cu| style="text-align:right" | 29| style="text-align:right" | 36| 64.92778948(69)| colspan=3 align=center|Stable| 3/2−| 0.3085(15)| |-| 66Cu| style="text-align:right" | 29| style="text-align:right" | 37| 65.92886880(70)| 5.120(14) min| β| 66Zn| 1+|||-| style="text-indent:1em" | 66mCu| colspan="3" style="text-indent:2em" | 1154.2(14) keV| 600(17) ns| IT| 68Cu| (6)−|||-| 67Cu| style="text-align:right" | 29| style="text-align:right" | 38| 66.92772949(96)| 61.83(12) h| β| 67Zn| 3/2−|||-| 68Cu| style="text-align:right" | 29| style="text-align:right" | 39| 67.9296109(17)| 30.9(6) s| β| 68Zn| 1+|||-| rowspan=2 style="text-indent:1em" | 68mCu| rowspan=2 colspan="3" style="text-indent:2em" | 721.26(8) keV| rowspan=2|3.75(5) min| IT (86%)| 68Cu| rowspan=2|6−| rowspan=2|| rowspan=2||-| β (14%)| 68Zn|-| 69Cu| style="text-align:right" | 29| style="text-align:right" | 40| 68.929429267(15)| 2.85(15) min| β| 69Zn| 3/2−|||-| style="text-indent:1em" | 69mCu| colspan="3" style="text-indent:2em" | 2742.0(7) keV| 357(2) ns| IT| 69Cu| (13/2+)|||-| 70Cu| style="text-align:right" | 29| style="text-align:right" | 41| 69.9323921(12)| 44.5(2) s| β| 70Zn| 6−|||-| rowspan=2 style="text-indent:1em" | 70m1Cu| rowspan=2 colspan="3" style="text-indent:2em" | 101.1(3) keV| rowspan=2|33(2) s| β (52%)| 70Zn| rowspan=2|3−| rowspan=2|| rowspan=2||-| IT (48%)| 70Cu|-| rowspan=2 style="text-indent:1em" | 70m2Cu| rowspan=2 colspan="3" style="text-indent:2em" | 242.6(5) keV| rowspan=2|6.6(2) s| β (93.2%)| 70Zn| rowspan=2|1+| rowspan=2|| rowspan=2||-| IT (6.8%)| 70Cu|-| 71Cu| style="text-align:right" | 29| style="text-align:right" | 42| 70.9326768(16)| 19.4(14) s| β| 71Zn| 3/2−|||-| style="text-indent:1em" | 71mCu| colspan="3" style="text-indent:2em" | 2755.7(6) keV| 271(13) ns| IT| 71Cu| (19/2−)|||-| 72Cu| style="text-align:right" | 29| style="text-align:right" | 43| 71.9358203(15)| 6.63(3) s| β| 72Zn| 2−|||-| style="text-indent:1em" | 72mCu| colspan="3" style="text-indent:2em" | 270(3) keV| 1.76(3) μs| IT| 72Cu| (6−)|||-| rowspan=2|73Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 44| rowspan=2|72.9366744(21)| rowspan=2|4.20(12) s| β (99.71%)| 73Zn| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| β, n (0.29%)| 72Zn|-| rowspan=2|74Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 45| rowspan=2|73.9398749(66)| rowspan=2|1.606(9) s| β (99.93%)| 74Zn| rowspan=2|2−| rowspan=2|| rowspan=2||-| β, n (0.075%)| 73Zn|-| rowspan=2|75Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 46| rowspan=2|74.94152382(77)| rowspan=2|1.224(3) s| β (97.3%)| 75Zn| rowspan=2|5/2−| rowspan=2|| rowspan=2||-| β, n (2.7%)| 74Zn|-| style="text-indent:1em" | 75m1Cu| colspan="3" style="text-indent:2em" | 61.7(4) keV| 0.310(8) μs| IT| 75Cu| 1/2−|||-| style="text-indent:1em" | 75m2Cu| colspan="3" style="text-indent:2em" | 66.2(4) keV| 0.149(5) μs| IT| 75Cu| 3/2−|||-| rowspan=2|76Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 47| rowspan=2|75.94526897(98)| rowspan=2|637.7(55) ms| β (92.8%)| 76Zn| rowspan=2|3−| rowspan=2|| rowspan=2||-| β, n (7.2%)| 75Zn|-| rowspan=2|77Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 48| rowspan=2|76.9475436(13)| rowspan=2|470.3(17) ms| β (69.9%)| 77Zn| rowspan=2|5/2−| rowspan=2|| rowspan=2||-| β, n (30.1%)| 76Zn|-| rowspan=3|78Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 49| rowspan=3|77.951917(14)| rowspan=3|330.7(20) ms| β, n (50.6%)| 77Zn| rowspan=3|(6−)| rowspan=3|| rowspan=3||-| β (49.4%)| 78Zn|-| β, 2n?| 76Zn|-| rowspan=3|79Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 50| rowspan=3|78.95447(11)| rowspan=3|241.3(21) ms| β, n (66%)| 78Zn| rowspan=3|(5/2−)| rowspan=3|| rowspan=3||-| β (34%)| 79Zn|-| β, 2n?| 77Zn|-| rowspan=3|80Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 51| rowspan=3|79.96062(32)#| rowspan=3|113.3(64) ms| β, n (59%)| 79Zn| rowspan=3|| rowspan=3|| rowspan=3||-| β (41%)| 80Zn|-| β, 2n?| 78Zn|-| rowspan=3|81Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 52| rowspan=3| 80.96574(32)#| rowspan=3| 73.2(68) ms| β, n (81%)| 80Zn| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β (19%)| 81Zn|-| β, 2n?| 79Zn|-| rowspan=3|82Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 53| rowspan=3| 81.97238(43)#| rowspan=3| 34(7) ms| β| 82Zn| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n?| 81Zn|-| β, 2n?| 80Zn|-| rowspan=3|83Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 54| rowspan=3| 82.97811(54)#| rowspan=3| 21# ms [>410 ns]| β?| 83Zn| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n?| 82Zn|-| β, 2n?| 81Zn|-| rowspan=2|84Cu[1] | rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 55| rowspan=2| 83.98527(54)#| rowspan=2|| β?| 84Zn| rowspan=2|| rowspan=2|| rowspan=2||-| β, n?| 84Zn|-

Copper nuclear magnetic resonance

Both stable isotopes of copper (63Cu and 65Cu) have nuclear spin of 3/2−, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. 63Cu is the more sensitive nucleus while 65Cu yields very slightly narrower signals. Usually though 63Cu NMR is preferred.[2]

Medical applications

Copper offers a relatively large number of radioisotopes that are potentially useful for nuclear medicine.

There is growing interest in the use of Cu, Cu, Cu, and Cu for diagnostic purposes and Cu and Cu for targeted radiotherapy. For example, Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.[3]

References

Notes and References

  1. Shimizu . Y. . Kubo . T. . Sumikama . T. . Fukuda . N. . Takeda . H. . Suzuki . H. . Ahn . D. S. . Inabe . N. . Kusaka . K. . Ohtake . M. . Yanagisawa . Y. . Yoshida . K. . Ichikawa . Y. . Isobe . T. . Otsu . H. . Sato . H. . Sonoda . T. . Murai . D. . Iwasa . N. . Imai . N. . Hirayama . Y. . Jeong . S. C. . Kimura . S. . Miyatake . H. . Mukai . M. . Kim . D. G. . Kim . E. . Yagi . A. . Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam . Physical Review C . 8 April 2024 . 109 . 4 . 10.1103/PhysRevC.109.044313.
  2. Web site: (Cu) Copper NMR .
  3. Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34