Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β− decay. 64Cu decays by both β+ and β−.
There are at least 10 metastable isomers of copper, including two each for 70Cu and 75Cu. The most stable of these is 68mCu with a half-life of 3.75 minutes. The least stable is 75m2Cu with a half-life of 149 ns.
|-| rowspan=2|55Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 26| rowspan=2|54.96604(17)| rowspan=2|55.9(15) ms| β+| 55Ni| rowspan=2|3/2−#| rowspan=2|| rowspan=2||-| β+, p?| 54Co|-| rowspan=2|56Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 27| rowspan=2|55.9585293(69)| rowspan=2|80.8(6) ms| β+ (99.60%)| 56Ni| rowspan=2|(4+)| rowspan=2|| rowspan=2||-| β+, p (0.40%)| 55Co|-| 57Cu| style="text-align:right" | 29| style="text-align:right" | 28| 56.94921169(54)| 196.4(7) ms| β+| 57Ni| 3/2−|||-| 58Cu| style="text-align:right" | 29| style="text-align:right" | 29| 57.94453228(60)| 3.204(7) s| β+| 58Ni| 1+|||-| 59Cu| style="text-align:right" | 29| style="text-align:right" | 30| 58.93949671(57)| 81.5(5) s| β+| 59Ni| 3/2−|||-| 60Cu| style="text-align:right" | 29| style="text-align:right" | 31| 59.9373638(17)| 23.7(4) min| β+| 60Ni| 2+|||-| 61Cu| style="text-align:right" | 29| style="text-align:right" | 32| 60.9334574(10)| 3.343(16) h| β+| 61Ni| 3/2−|||-| 62Cu| style="text-align:right" | 29| style="text-align:right" | 33| 61.9325948(07)| 9.672(8) m| β+| 62Ni| 1+|||-| 63Cu| style="text-align:right" | 29| style="text-align:right" | 34| 62.92959712(46)| colspan=3 align=center|Stable| 3/2−| 0.6915(15)| |-| rowspan=2|64Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 35| rowspan=2|63.92976400(46)| rowspan=2|12.7004(13) h| β+ (61.52%)| 64Ni| rowspan=2|1+| rowspan=2|| rowspan=2||-| β− (38.48%)| 64Zn|-| 65Cu| style="text-align:right" | 29| style="text-align:right" | 36| 64.92778948(69)| colspan=3 align=center|Stable| 3/2−| 0.3085(15)| |-| 66Cu| style="text-align:right" | 29| style="text-align:right" | 37| 65.92886880(70)| 5.120(14) min| β−| 66Zn| 1+|||-| style="text-indent:1em" | 66mCu| colspan="3" style="text-indent:2em" | 1154.2(14) keV| 600(17) ns| IT| 68Cu| (6)−|||-| 67Cu| style="text-align:right" | 29| style="text-align:right" | 38| 66.92772949(96)| 61.83(12) h| β−| 67Zn| 3/2−|||-| 68Cu| style="text-align:right" | 29| style="text-align:right" | 39| 67.9296109(17)| 30.9(6) s| β−| 68Zn| 1+|||-| rowspan=2 style="text-indent:1em" | 68mCu| rowspan=2 colspan="3" style="text-indent:2em" | 721.26(8) keV| rowspan=2|3.75(5) min| IT (86%)| 68Cu| rowspan=2|6−| rowspan=2|| rowspan=2||-| β− (14%)| 68Zn|-| 69Cu| style="text-align:right" | 29| style="text-align:right" | 40| 68.929429267(15)| 2.85(15) min| β−| 69Zn| 3/2−|||-| style="text-indent:1em" | 69mCu| colspan="3" style="text-indent:2em" | 2742.0(7) keV| 357(2) ns| IT| 69Cu| (13/2+)|||-| 70Cu| style="text-align:right" | 29| style="text-align:right" | 41| 69.9323921(12)| 44.5(2) s| β−| 70Zn| 6−|||-| rowspan=2 style="text-indent:1em" | 70m1Cu| rowspan=2 colspan="3" style="text-indent:2em" | 101.1(3) keV| rowspan=2|33(2) s| β− (52%)| 70Zn| rowspan=2|3−| rowspan=2|| rowspan=2||-| IT (48%)| 70Cu|-| rowspan=2 style="text-indent:1em" | 70m2Cu| rowspan=2 colspan="3" style="text-indent:2em" | 242.6(5) keV| rowspan=2|6.6(2) s| β− (93.2%)| 70Zn| rowspan=2|1+| rowspan=2|| rowspan=2||-| IT (6.8%)| 70Cu|-| 71Cu| style="text-align:right" | 29| style="text-align:right" | 42| 70.9326768(16)| 19.4(14) s| β−| 71Zn| 3/2−|||-| style="text-indent:1em" | 71mCu| colspan="3" style="text-indent:2em" | 2755.7(6) keV| 271(13) ns| IT| 71Cu| (19/2−)|||-| 72Cu| style="text-align:right" | 29| style="text-align:right" | 43| 71.9358203(15)| 6.63(3) s| β−| 72Zn| 2−|||-| style="text-indent:1em" | 72mCu| colspan="3" style="text-indent:2em" | 270(3) keV| 1.76(3) μs| IT| 72Cu| (6−)|||-| rowspan=2|73Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 44| rowspan=2|72.9366744(21)| rowspan=2|4.20(12) s| β− (99.71%)| 73Zn| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| β−, n (0.29%)| 72Zn|-| rowspan=2|74Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 45| rowspan=2|73.9398749(66)| rowspan=2|1.606(9) s| β− (99.93%)| 74Zn| rowspan=2|2−| rowspan=2|| rowspan=2||-| β−, n (0.075%)| 73Zn|-| rowspan=2|75Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 46| rowspan=2|74.94152382(77)| rowspan=2|1.224(3) s| β− (97.3%)| 75Zn| rowspan=2|5/2−| rowspan=2|| rowspan=2||-| β−, n (2.7%)| 74Zn|-| style="text-indent:1em" | 75m1Cu| colspan="3" style="text-indent:2em" | 61.7(4) keV| 0.310(8) μs| IT| 75Cu| 1/2−|||-| style="text-indent:1em" | 75m2Cu| colspan="3" style="text-indent:2em" | 66.2(4) keV| 0.149(5) μs| IT| 75Cu| 3/2−|||-| rowspan=2|76Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 47| rowspan=2|75.94526897(98)| rowspan=2|637.7(55) ms| β− (92.8%)| 76Zn| rowspan=2|3−| rowspan=2|| rowspan=2||-| β−, n (7.2%)| 75Zn|-| rowspan=2|77Cu| rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 48| rowspan=2|76.9475436(13)| rowspan=2|470.3(17) ms| β− (69.9%)| 77Zn| rowspan=2|5/2−| rowspan=2|| rowspan=2||-| β−, n (30.1%)| 76Zn|-| rowspan=3|78Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 49| rowspan=3|77.951917(14)| rowspan=3|330.7(20) ms| β−, n (50.6%)| 77Zn| rowspan=3|(6−)| rowspan=3|| rowspan=3||-| β− (49.4%)| 78Zn|-| β−, 2n?| 76Zn|-| rowspan=3|79Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 50| rowspan=3|78.95447(11)| rowspan=3|241.3(21) ms| β−, n (66%)| 78Zn| rowspan=3|(5/2−)| rowspan=3|| rowspan=3||-| β− (34%)| 79Zn|-| β−, 2n?| 77Zn|-| rowspan=3|80Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 51| rowspan=3|79.96062(32)#| rowspan=3|113.3(64) ms| β−, n (59%)| 79Zn| rowspan=3|| rowspan=3|| rowspan=3||-| β− (41%)| 80Zn|-| β−, 2n?| 78Zn|-| rowspan=3|81Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 52| rowspan=3| 80.96574(32)#| rowspan=3| 73.2(68) ms| β−, n (81%)| 80Zn| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β− (19%)| 81Zn|-| β−, 2n?| 79Zn|-| rowspan=3|82Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 53| rowspan=3| 81.97238(43)#| rowspan=3| 34(7) ms| β−| 82Zn| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β−, n?| 81Zn|-| β−, 2n?| 80Zn|-| rowspan=3|83Cu| rowspan=3 style="text-align:right" | 29| rowspan=3 style="text-align:right" | 54| rowspan=3| 82.97811(54)#| rowspan=3| 21# ms [>410 ns]| β−?| 83Zn| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β−, n?| 82Zn|-| β−, 2n?| 81Zn|-| rowspan=2|84Cu[1] | rowspan=2 style="text-align:right" | 29| rowspan=2 style="text-align:right" | 55| rowspan=2| 83.98527(54)#| rowspan=2|| β−?| 84Zn| rowspan=2|| rowspan=2|| rowspan=2||-| β−, n?| 84Zn|-
Both stable isotopes of copper (63Cu and 65Cu) have nuclear spin of 3/2−, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. 63Cu is the more sensitive nucleus while 65Cu yields very slightly narrower signals. Usually though 63Cu NMR is preferred.[2]
Copper offers a relatively large number of radioisotopes that are potentially useful for nuclear medicine.
There is growing interest in the use of Cu, Cu, Cu, and Cu for diagnostic purposes and Cu and Cu for targeted radiotherapy. For example, Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.[3]