Naturally occurring cobalt, Co, consists of a single stable isotope, Co (thus, cobalt is a mononuclidic element). Twenty-eight radioisotopes have been characterized; the most stable are Co with a half-life of 5.2714 years, Co (271.8 days), Co (77.27 days), and Co (70.86 days). All other isotopes have half-lives of less than 18 hours and most of these have half-lives of less than 1 second. This element also has 11 meta states, all of which have half-lives of less than 15 minutes.
The isotopes of cobalt range in atomic weight from Co to Co. The main decay mode for isotopes with atomic mass less than that of the stable isotope, Co, is electron capture and the main mode of decay for those of greater than 59 atomic mass units is beta decay. The main decay products before Co are iron isotopes and the main products after are nickel isotopes.
Radioisotopes can be produced by various nuclear reactions. For example, Co is produced by cyclotron irradiation of iron. The main reaction is the (d,n) reaction Fe + H → n + Co.[1]
|-| Co| style="text-align:right" | 27| style="text-align:right" | 20| 47.01149(54)#|||| 7/2−#||-| Co| style="text-align:right" | 27| style="text-align:right" | 21| 48.00176(43)#|| p| Fe| 6+#||-| rowspan=2|Co| rowspan=2 style="text-align:right" | 27| rowspan=2 style="text-align:right" | 22| rowspan=2|48.98972(28)#| rowspan=2|<35 ns| p (>99.9%)| Fe| rowspan=2|7/2−#| rowspan=2||-| β (<.1%)| Fe|-| rowspan=2|Co| rowspan=2 style="text-align:right" | 27| rowspan=2 style="text-align:right" | 23| rowspan=2|49.98154(18)#| rowspan=2|44(4) ms| β, p (54%)| Mn| rowspan=2|(6+)| rowspan=2||-| β (46%)| Fe|-| Co| style="text-align:right" | 27| style="text-align:right" | 24| 50.97072(16)#| 60# ms [>200 ns]| β| Fe| 7/2−#||-| Co| style="text-align:right" | 27| style="text-align:right" | 25| 51.96359(7)#| 115(23) ms| β| Fe| (6+)||-| rowspan=2 style="text-indent:1em" | Co| rowspan=2 colspan="3" style="text-indent:2em" | 380(100)# keV| rowspan=2|104(11)# ms| β| Fe| rowspan=2|2+#| rowspan=2||-| IT| Co|-| Co| style="text-align:right" | 27| style="text-align:right" | 26| 52.954219(19)| 242(8) ms| β| Fe| 7/2−#||-| rowspan=2 style="text-indent:1em" | Co| rowspan=2 colspan="3" style="text-indent:2em" | 3197(29) keV| rowspan=2|247(12) ms| β (98.5%)| Fe| rowspan=2|(19/2−)| rowspan=2||-| p (1.5%)| Fe|-| Co| style="text-align:right" | 27| style="text-align:right" | 27| 53.9484596(8)| 193.28(7) ms| β| Fe| 0+||-| style="text-indent:1em" | Co| colspan="3" style="text-indent:2em" | 197.4(5) keV| 1.48(2) min| β| Fe| (7)+||-| Co| style="text-align:right" | 27| style="text-align:right" | 28| 54.9419990(8)| 17.53(3) h| β| Fe| 7/2−||-| Co| style="text-align:right" | 27| style="text-align:right" | 29| 55.9398393(23)| 77.233(27) d| β| Fe| 4+||-| Co| style="text-align:right" | 27| style="text-align:right" | 30| 56.9362914(8)| 271.74(6) d| EC| Fe| 7/2−||-| Co| style="text-align:right" | 27| style="text-align:right" | 31| 57.9357528(13)| 70.86(6) d| β| Fe| 2+||-| style="text-indent:1em" | Co| colspan="3" style="text-indent:2em" | 24.95(6) keV| 9.04(11) h| IT| Co| 5+||-| style="text-indent:1em" | Co| colspan="3" style="text-indent:2em" | 53.15(7) keV| 10.4(3) μs||| 4+||-| Co| style="text-align:right" | 27| style="text-align:right" | 32| 58.9331950(7)| colspan="3" style="text-align:center;"|Stable| 7/2−| 1.0000|-| Co| style="text-align:right" | 27| style="text-align:right" | 33| 59.9338171(7)| 5.2714(6) y | β, γ| Ni| 5+||-| rowspan=2 style="text-indent:1em" | Co| rowspan=2 colspan="3" style="text-indent:2em" | 58.59(1) keV| rowspan=2|10.467(6) min| IT (99.76%)| Co| rowspan=2|2+| rowspan=2||-| β (.24%)| Ni|-| Co| style="text-align:right" | 27| style="text-align:right" | 34| 60.9324758(10)| 1.650(5) h| β| Ni| 7/2−||-| Co| style="text-align:right" | 27| style="text-align:right" | 35| 61.934051(21)| 1.50(4) min| β| Ni| 2+||-| rowspan=2 style="text-indent:1em" | Co| rowspan=2 colspan="3" style="text-indent:2em" | 22(5) keV| rowspan=2|13.91(5) min| β (99%)| Ni| rowspan=2|5+| rowspan=2||-| IT (1%)| Co|-| Co| style="text-align:right" | 27| style="text-align:right" | 36| 62.933612(21)| 26.9(4) s| β| Ni| 7/2−||-| Co| style="text-align:right" | 27| style="text-align:right" | 37| 63.935810(21)| 0.30(3) s| β| Ni| 1+||-| Co| style="text-align:right" | 27| style="text-align:right" | 38| 64.936478(14)| 1.20(6) s| β| Ni| (7/2)−||-| Co| style="text-align:right" | 27| style="text-align:right" | 39| 65.93976(27)| 0.18(1) s| β| Ni| (3+)||-| style="text-indent:1em" | Co| colspan="3" style="text-indent:2em" | 175(3) keV| 1.21(1) μs||| (5+)||-| style="text-indent:1em" | Co| colspan="3" style="text-indent:2em" | 642(5) keV| >100 μs||| (8-)||-| Co| style="text-align:right" | 27| style="text-align:right" | 40| 66.94089(34)| 0.425(20) s| β| Ni| (7/2−)#||-| Co| style="text-align:right" | 27| style="text-align:right" | 41| 67.94487(34)| 0.199(21) s| β| Ni| (7-)||-| style="text-indent:1em" | Co| colspan="3" style="text-indent:2em" | 150(150)# keV| 1.6(3) s||| (3+)| |-| rowspan=2|Co| rowspan=2 style="text-align:right" | 27| rowspan=2 style="text-align:right" | 42| rowspan=2|68.94632(36)| rowspan=2|227(13) ms| β (>99.9%)| Ni| rowspan=2|7/2−#| rowspan=2||-| β, n (<.1%)| Ni|-| rowspan=2|Co| rowspan=2 style="text-align:right" | 27| rowspan=2 style="text-align:right" | 43| rowspan=2|69.9510(9)| rowspan=2|119(6) ms| β (>99.9%)| Ni| rowspan=2|(6-)| rowspan=2||-| β, n (<.1%)| Ni|-| style="text-indent:1em" | Co| colspan="3" style="text-indent:2em" | 200(200)# keV| 500(180) ms||| (3+)||-| rowspan=2|Co| rowspan=2 style="text-align:right" | 27| rowspan=2 style="text-align:right" | 44| rowspan=2|70.9529(9)| rowspan=2|97(2) ms| β (>99.9%)| Ni| rowspan=2|7/2−#| rowspan=2||-| β, n (<.1%)| Ni|-| rowspan=2|Co| rowspan=2 style="text-align:right" | 27| rowspan=2 style="text-align:right" | 45| rowspan=2|71.95781(64)#| rowspan=2|62(3) ms| β (>99.9%)| Ni| rowspan=2|(6-,7-)| rowspan=2||-| β, n (<.1%)| Ni|-| Co| style="text-align:right" | 27| style="text-align:right" | 46| 72.96024(75)#| 41(4) ms||| 7/2−#||-| Co| style="text-align:right" | 27| style="text-align:right" | 47| 73.96538(86)#| 50# ms [>300 ns]||| 0+||-| Co| style="text-align:right" | 27| style="text-align:right" | 48| 74.96833(86)#| 40# ms [>300 ns]||| 7/2−#||-| Co[2] | style="text-align:right" | 27| style="text-align:right" | 49| | 40# ms| β| Ni| 8-#|
One of the terminal nuclear reactions in stars prior to supernova produces 56Ni. Following its production, 56Ni decays to 56Co, and then 56Co subsequently decays to 56Fe. These decay reactions power the luminosity displayed in light decay curves. Both the light decay and radioactive decay curves are expected to be exponential. Therefore, the light decay curve should give an indication of the nuclear reactions powering it. This has been confirmed by observation of bolometric light decay curves for SN 1987A. Between 600 and 800 days after SN1987A occurred, the bolometric light curve decreased at an exponential rate with half-life values from τ1/2 = 68.6 days to τ1/2 = 69.6 days.[3] The rate at which the luminosity decreased closely matched the exponential decay of 56Co with a half-life of τ1/2 = 77.233 days.
Cobalt-57 (Co or Co-57) is used in medical tests; it is used as a radiolabel for vitamin B uptake. It is useful for the Schilling test.[4]
Cobalt-60 (Co or Co-60) is used in radiotherapy. It produces two gamma rays with energies of 1.17 MeV and 1.33 MeV. The Co source is about 2 cm in diameter and as a result produces a geometric penumbra, making the edge of the radiation field fuzzy. The metal has the unfortunate habit of producing fine dust, causing problems with radiation protection. The Co source is useful for about 5 years but even after this point is still very radioactive, and so cobalt machines have fallen from favor in the Western world where Linacs are common.
Cobalt-60 (Co) is useful as a gamma ray source because it can be produced in predictable quantities, and for its high radioactivity simply by exposing natural cobalt to neutrons in a reactor.[5] The uses for industrial cobalt include:
Co is used as a source in Mössbauer spectroscopy of iron-containing samples. Electron capture by Co forms an excited state of the Fe nucleus, which in turn decays to the ground state with the emission of a gamma ray. Measurement of the gamma-ray spectrum provides information about the chemical state of the iron atom in the sample.