Boron (5B) naturally occurs as isotopes and, the latter of which makes up about 80% of natural boron. There are 13 radioisotopes that have been discovered, with mass numbers from 7 to 21, all with short half-lives, the longest being that of, with a half-life of only and with a half-life of . All other isotopes have half-lives shorter than . Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for and) while those with mass above 11 mostly become carbon.
|-| ?[1] | style="text-align:center" | 5| style="text-align:center" | 1| | p-unstable| 2p?| ?| 2−#|||-| | style="text-align:center" | 5| style="text-align:center" | 2| |
[{{val|801|(20)|u=keV}}]| p| [2] | (3/2−)|||-| [3] [4] | style="text-align:center" | 5| style="text-align:center" | 3| | | β+α| | 2+|||-| style="text-indent:1em" | | colspan="3" style="text-indent:2em" | | | | | 0+|||-| | style="text-align:center" | 5| style="text-align:center" | 4| | | p| | [5] | 3/2−|||-| [6] | style="text-align:center" | 5| style="text-align:center" | 5| | colspan=3 align=center|Stable| 3+| colspan=2 align=center|[{{val|0.189}}, {{val|0.204}}][7] |-| | style="text-align:center" | 5| style="text-align:center" | 6| | colspan=3 align=center|Stable| 3/2−| colspan=2 align=center|[{{val|0.796}}, {{val|0.811}}]|-| style="text-indent:1em" | | colspan="3" style="text-indent:2em" | | | | | 1/2+, (3/2+)|||-| rowspan=2|| rowspan=2 style="text-align:center" | 5| rowspan=2 style="text-align:center" | 7| rowspan=2|| rowspan=2|| β− | | rowspan=2|1+| rowspan=2|| rowspan=2||-| β−α | [8] |-| rowspan=2|| rowspan=2 style="text-align:center" | 5| rowspan=2 style="text-align:center" | 8| rowspan=2|| rowspan=2|| β− | | rowspan=2|3/2−| rowspan=2|| rowspan=2||-| β−n | |-| rowspan=3|| rowspan=3 style="text-align:center" | 5| rowspan=3 style="text-align:center" | 9| rowspan=3|| rowspan=3|| β− | | rowspan=3|2−| rowspan=3|| rowspan=3||-| β−n | |-| β−2n ?[9] | ?|-| style="text-indent:1em" | | colspan="3" style="text-indent:2em" | | | IT ?| | 0+|||-| rowspan=3|| rowspan=3 style="text-align:center" | 5| rowspan=3 style="text-align:center" | 10| rowspan=3|| rowspan=3|| β−n | | rowspan=3|3/2−| rowspan=3|| rowspan=3||-| β− (<)| |-| β−2n (<)| |-| | style=text-align:center | 5| style=text-align:center | 11| | > | n ?| ?| 0−|||-| rowspan=5|[10] | rowspan=5 style=text-align:center | 5| rowspan=5 style=text-align:center | 12| rowspan=5|| rowspan=5|| β−n | | rowspan=5|(3/2−)| rowspan=5|| rowspan=5||-| β− | |-| β−2n | |-| β−3n | |-| β−4n | |-| | style=text-align:center | 5| style=text-align:center | 13| | < | n| | (2−)|||-| rowspan=4|| rowspan=4 style=text-align:center | 5| rowspan=4 style=text-align:center | 14| rowspan=4|| rowspan=4|| β−n | | rowspan=4|(3/2−)| rowspan=4|| rowspan=4||-| β−2n | |-| β−3n (<)| |-| β− (>)| |-| [11] | style=text-align:center | 5| style=text-align:center | 15| | > | n| | (1−, 2−)|||-| | style=text-align:center | 5| style=text-align:center | 16| | > | 2n| | (3/2−)||
Boron-8 is an isotope of boron that undergoes β+ decay to beryllium-8 with a half-life of . It is the strongest candidate for a halo nucleus with a loosely-bound proton, in contrast to neutron halo nuclei such as lithium-11.[12]
Although neutrinos from boron-8 beta decays within the Sun make up only about 80 ppm of the total solar neutrino flux, they have a higher energy centered around 10 MeV,[13] and are an important background to dark matter direct detection experiments.[14] They are the first component of the neutrino floor that dark matter direct detection experiments are expected to eventually encounter.
Boron-10 is used in boron neutron capture therapy as an experimental treatment of some brain cancers.
https://borates.today/isotopes-a-comprehensive-guide/#:~:text=Boron%20isotope%20elements%20with%20masses,11%20mostly%20decay%20into%20carbon.