Bulk modulus explained

The bulk modulus (

K

or

B

or

k

) of a substance is a measure of the resistance of a substance to bulk compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume.[1]

Other moduli describe the material's response (strain) to other kinds of stress: the shear modulus describes the response to shear stress, and Young's modulus describes the response to normal (lengthwise stretching) stress. For a fluid, only the bulk modulus is meaningful. For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility.

Definition

The bulk modulus

K

(which is usually positive) can be formally defined by the equation
K=-VdP
dV

,

where

P

is pressure,

V

is the initial volume of the substance, and

dP/dV

denotes the derivative of pressure with respect to volume. Since the volume is inversely proportional to the density, it follows that

K=\rho

dP
d\rho

,

where

\rho

is the initial density and

dP/d\rho

denotes the derivative of pressure with respect to density. The inverse of the bulk modulus gives a substance's compressibility. Generally the bulk modulus is defined at constant temperature as the isothermal bulk modulus, but can also be defined at constant entropy as the adiabatic bulk modulus.

Thermodynamic relation

Strictly speaking, the bulk modulus is a thermodynamic quantity, and in order to specify a bulk modulus it is necessary to specify how the pressure varies during compression: constant-temperature (isothermal

KT

), constant-entropy (isentropic

KS

), and other variations are possible. Such distinctions are especially relevant for gases.

For an ideal gas, an isentropic process has:

PV\gamma=constantP\propto\left(

1
V

\right)\gamma\propto\rho\gamma,

where

\gamma

is the heat capacity ratio. Therefore, the isentropic bulk modulus

KS

is given by

KS=\gammaP.

Similarly, an isothermal process of an ideal gas has:

PV=constantP\propto

1
V

\propto\rho,

Therefore, the isothermal bulk modulus

KT

is given by

KT=P

.

When the gas is not ideal, these equations give only an approximation of the bulk modulus. In a fluid, the bulk modulus

K

and the density

\rho

determine the speed of sound

c

(pressure waves), according to the Newton-Laplace formula
c=\sqrt{K
\rho
}.

In solids,

KS

and

KT

have very similar values. Solids can also sustain transverse waves: for these materials one additional elastic modulus, for example the shear modulus, is needed to determine wave speeds.

Measurement

It is possible to measure the bulk modulus using powder diffraction under applied pressure.It is a property of a fluid which shows its ability to change its volume under its pressure.

Selected values

Diamond (at 4K) [2]
Alumina (γ phase)[3] ± 14
Steel<--http://hyperphysics.phy-astr.gsu.edu/hbase/permot3.html-->
Glass (see also diagram below table) to
Graphite 2H (single crystal)[4]
Sodium chloride
Rubber[5] to to

A material with a bulk modulus of 35 GPa loses one percent of its volume when subjected to an external pressure of 0.35 GPa (~) (assumed constant or weakly pressure dependent bulk modulus).

Approximate bulk modulus (K) for other substances
[6] (predicted)
Water (value increases at higher pressures)
Methanol (at 20 °C and 1 Atm)
(approximate)
Air (adiabatic bulk modulus [or [[isentropic]] bulk modulus])
Air (isothermal bulk modulus)
(for typical gravitational wave frequencies of 100Hz) [7]

Microscopic origin

Interatomic potential and linear elasticity

Since linear elasticity is a direct result of interatomic interaction, it is related to the extension/compression of bonds. It can then be derived from the interatomic potential for crystalline materials.[8] First, let us examine the potential energy of two interacting atoms. Starting from very far points, they will feel an attraction towards each other. As they approach each other, their potential energy will decrease. On the other hand, when two atoms are very close to each other, their total energy will be very high due to repulsive interaction. Together, these potentials guarantee an interatomic distance that achieves a minimal energy state. This occurs at some distance a0, where the total force is zero:

F=-{\partialU\over\partialr}=0

Where U is interatomic potential and r is the interatomic distance. This means the atoms are in equilibrium.

To extend the two atoms approach into solid, consider a simple model, say, a 1-D array of one element with interatomic distance of a, and the equilibrium distance is a0. Its potential energy-interatomic distance relationship has similar form as the two atoms case, which reaches minimal at a0, The Taylor expansion for this is:

u(a)=u(a0)+\left({\partialu\over\partialr}\right

)
r=a0

(a-a0)+{1\over2}\left({\partial2\over\partialr2}u\right

)
r=a0
2+O
(a-a
0)

\left

3
((a-a
0)

\right)

At equilibrium, the first derivative is 0, so the dominant term is the quadratic one. When displacement is small, the higher order terms should be omitted. The expression becomes:

u(a)=u(a0)+{1\over2}\left({\partial2\over\partialr2}u\right

)
r=a0
2
(a-a
0)

F(a)=-{\partialu\over\partialr}=\left({\partial2\over\partialr2}u\right

)
r=a0

(a-a0)

Which is clearly linear elasticity.

Note that the derivation is done considering two neighboring atoms, so the Hook's coefficient is:

K=a0{dF\overdr}=a0\left({\partial2\over\partialr2}u\right

)
r=a0

This form can be easily extended to 3-D case, with volume per atom(Ω) in place of interatomic distance.

K=\Omega0\left({\partial2\over\partial\Omega2}u\right

)
\Omega=\Omega0

See also

Further reading

Notes and References

  1. Web site: Bulk Elastic Properties. hyperphysics. Georgia State University.
  2. Page 52 of "Introduction to Solid State Physics, 8th edition" by Charles Kittel, 2005,
  3. Gallas. Marcia R.. Piermarini. Gasper J.. 1994. Bulk Modulus and Young's Modulus of Nanocrystalline γ-Alumina. Journal of the American Ceramic Society. en. 77. 11. 2917–2920. 10.1111/j.1151-2916.1994.tb04524.x. 1551-2916.
  4. Web site: Graphite Properties Page by John A. Jaszczak. 2021-07-16. pages.mtu.edu.
  5. Web site: Silicone Rubber. AZO materials.
  6. Liu, A. Y.; Cohen, M. L. (1989). "Prediction of New Low Compressibility Solids". Science. 245 (4920): 841–842.
  7. Beau, M. R. (2018). "On the nature of space-time, cosmological inflation, and expansion of the universe". Preprint. DOI:10.13140/RG.2.2.16796.95364
  8. Book: H., Courtney, Thomas. Mechanical Behavior of Materials. 2013. McGraw Hill Education (India). 978-1259027512. 2nd ed. Reimp. New Delhi. 929663641.