thumb|right|300px|Fig. 1: Isoclines (blue), slope field (black), and some solution curves (red) of y = xy. The solution curves are y=Cx2/2 e
Isoclines are often used as a graphical method of solving ordinary differential equations. In an equation of the form y' = f(x, y), the isoclines are lines in the (x, y) plane obtained by setting f(x, y) equal to a constant. This gives a series of lines (for different constants) along which the solution curves have the same gradient. By calculating this gradient for each isocline, the slope field can be visualised; making it relatively easy to sketch approximate solution curves; as in fig. 1.
In population dynamics, the term "zero-growth isocline" refers to the set of population sizes at which the rate of change for one population in a pair of interacting populations is zero.[1] However, this is rare and a more common term is nullcline.