Cation channel superfamily explained

See also: Voltage-gated ion channel.

The transmembrane cation channel superfamily was defined in InterPro and Pfam as the family of tetrameric ion channels. These include the sodium, potassium,[1] calcium, ryanodine receptor, HCN, CNG, CatSper, and TRP channels. This large group of ion channels apparently includes families,,, and of the TCDB transporter classification.

They are described as minimally having two transmembrane helices flanking a loop which determines the ion selectivity of the channel pore. Many eukaryotic channels have four additional transmembrane helices (TM), related to or vestigial of voltage gating. The proteins with only two transmembrane helices are most commonly found in bacteria. This also includes the 2-TM inward-rectifier potassium channels found primarily in eukaryotes. There are commonly additional regulatory domains which serve to regulate ion conduction and channel gating. The pores may also be homotetramers or heterotetramers; where heterotetramers may be encoded as distinct genes or as multiple pore domains within a single polypeptide. The HVCN1 and Putative tyrosine-protein phosphatase proteins do not contain an expected ion conduction pore domain, but rather have homology only to the voltage sensor domain of voltage gated ion channels.

Human channels with 6 TM helices

Cation

Transient receptor potential

See main article: Transient receptor potential channel.

Canonical

See main article: Canonical TRP channels.

Melastatin

See main article: Melastatin TRP channels.

Vanilloid

See main article: Vanilloid TRP channels.

Mucolipin

See main article: Mucolipin TRP channels.

Ankyrin

See main article: Ankyrin TRP channels.

TRPP

See main article: Transient Receptor Potential Polycystic.

Calcium

Voltage-dependent

See main article: Voltage-dependent calcium channels.

Sperm

See main article: Cation channels of sperm.

Ryanodine receptor

See main article: Ryanodine receptor.

Potassium

Voltage-gated potassium

See main article: Voltage-gated potassium channels.

Delayed rectifier
A-type potassium
Outward-rectifying
Inwardly-rectifying
Slowly activating
Modifier/silencer

Calcium-activated

See main article: Calcium-activated potassium channels.

BK

See main article: BK channels.

SK

See main article: SK channels.

IK

See main article: IK channels.

Other subfamilies

Inward-rectifier potassium

See main article: Inward-rectifier potassium ion channel.

Sodium

Cyclic nucleotide-gated

Proton

Related proteins

Human channels with 2 TM helices in each subunit

Potassium

Tandem pore domain potassium channel

See main article: Tandem pore domain potassium channel.

Non-human channels

Two-pore

See main article: Two-pore channels.

Pore-only potassium

See main article: Pore-only potassium channels.

Ligand-gated potassium

Voltage-gated potassium

See main article: Voltage-gated potassium channels.

Prokaryotic KCa

Voltage and cyclic nucleotide gated potassium

Sodium

Non-selective

Prokaryotic inward-rectifier potassium

See main article: Inward-rectifier potassium channels.

Engineered

External links

Notes and References

  1. Choe S . Potassium channel structures . Nature Reviews. Neuroscience . 3 . 2 . 115–21 . February 2002 . 11836519 . 10.1038/nrn727 . 825973 .
  2. Chen GQ, Cui C, Mayer ML, Gouaux E . Functional characterization of a potassium-selective prokaryotic glutamate receptor . Nature . 402 . 6763 . 817–21 . December 1999 . 10617203 . 10.1038/45568 . 1999Natur.402..817C . 4391943 .
  3. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R . X-ray structure of a voltage-dependent K+ channel . Nature . 423 . 6935 . 33–41 . May 2003 . 12721618 . 10.1038/nature01580 . 2003Natur.423...33J . 4347957 .
  4. Milkman R . An Escherichia coli homologue of eukaryotic potassium channel proteins . Proceedings of the National Academy of Sciences of the United States of America . 91 . 9 . 3510–4 . April 1994 . 8170937 . 43609 . 10.1073/pnas.91.9.3510 . 1994PNAS...91.3510M . free .
  5. Jiang Y, Pico A, Cadene M, Chait BT, MacKinnon R . Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel . Neuron . 29 . 3 . 593–601 . March 2001 . 11301020 . 10.1016/s0896-6273(01)00236-7 . 17880955 . free .
  6. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R . Crystal structure and mechanism of a calcium-gated potassium channel . Nature . 417 . 6888 . 515–22 . May 2002 . 12037559 . 10.1038/417515a . 2002Natur.417..515J . 205029269 .
  7. Smith FJ, Pau VP, Cingolani G, Rothberg BS . Structural basis of allosteric interactions among Ca2+-binding sites in a K+ channel RCK domain . Nature Communications . 4 . 2621 . 2013 . 24126388 . 10.1038/ncomms3621 . 2013NatCo...4.2621S . free .
  8. Ye S, Li Y, Chen L, Jiang Y . Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels . Cell . 126 . 6 . 1161–73 . September 2006 . 16990139 . 10.1016/j.cell.2006.08.029 . 418563 . free .
  9. Dvir H, Valera E, Choe S . Structure of the MthK RCK in complex with cadmium . Journal of Structural Biology . 171 . 2 . 231–7 . August 2010 . 20371380 . 2956275 . 10.1016/j.jsb.2010.03.020 .
  10. Smith FJ, Pau VP, Cingolani G, Rothberg BS . Crystal structure of a Ba(2+)-bound gating ring reveals elementary steps in RCK domain activation . Structure . 20 . 12 . 2038–47 . December 2012 . 23085076 . 3518701 . 10.1016/j.str.2012.09.014 .
  11. Cao Y, Jin X, Huang H, Derebe MG, Levin EJ, Kabaleeswaran V, Pan Y, Punta M, Love J, Weng J, Quick M, Ye S, Kloss B, Bruni R, Martinez-Hackert E, Hendrickson WA, Rost B, Javitch JA, Rajashankar KR, Jiang Y, Zhou M . Crystal structure of a potassium ion transporter, TrkH . Nature . 471 . 7338 . 336–40 . March 2011 . 21317882 . 3077569 . 10.1038/nature09731 . 2011Natur.471..336C .
  12. Cao Y, Pan Y, Huang H, Jin X, Levin EJ, Kloss B, Zhou M . Gating of the TrkH ion channel by its associated RCK protein TrkA . Nature . 496 . 7445 . 317–22 . April 2013 . 23598339 . 3726529 . 10.1038/nature12056 . 2013Natur.496..317C .
  13. Vieira-Pires RS, Szollosi A, Morais-Cabral JH . The structure of the KtrAB potassium transporter . Nature . 496 . 7445 . 323–8 . April 2013 . 23598340 . 10.1038/nature12055 . 2013Natur.496..323V . 10216/110345 . 205233489 . free .
  14. Kong C, Zeng W, Ye S, Chen L, Sauer DB, Lam Y, Derebe MG, Jiang Y . Distinct gating mechanisms revealed by the structures of a multi-ligand gated K(+) channel . eLife . 1 . e00184 . December 2012 . 23240087 . 3510474 . 10.7554/eLife.00184 . free .
  15. Deller MC, Johnson HA, Miller MD, Spraggon G, Elsliger MA, Wilson IA, Lesley SA . Crystal structure of a two-subunit TrkA octameric gating ring assembly . PLOS ONE . 10 . 3 . e0122512 . 2015 . 25826626 . 4380455 . 10.1371/journal.pone.0122512 . 2015PLoSO..1022512D . free .
  16. Clayton GM, Altieri S, Heginbotham L, Unger VM, Morais-Cabral JH . Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel . Proceedings of the National Academy of Sciences of the United States of America . 105 . 5 . 1511–5 . February 2008 . 18216238 . 2234175 . 10.1073/pnas.0711533105 . 2008PNAS..105.1511C . free .
  17. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE . A prokaryotic voltage-gated sodium channel . Science . 294 . 5550 . 2372–5 . December 2001 . 11743207 . 10.1126/science.1065635 . 2001Sci...294.2372R . 5721075 .
  18. Payandeh J, Scheuer T, Zheng N, Catterall WA . The crystal structure of a voltage-gated sodium channel . Nature . 475 . 7356 . 353–8 . July 2011 . 21743477 . 3266868 . 10.1038/nature10238 .
  19. Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL . Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels . Journal of Molecular Biology . 426 . 2 . 467–83 . January 2014 . 24120938 . 3947372 . 10.1016/j.jmb.2013.10.010 . 2014BpJ...106..130A .
  20. Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J, Wang J, Clapham DE, Yan N . Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel . Nature . 486 . 7401 . 130–4 . May 2012 . 22678295 . 3979295 . 10.1038/nature11054 . 2012Natur.486..130Z .
  21. McCusker EC, Bagnéris C, Naylor CE, Cole AR, D'Avanzo N, Nichols CG, Wallace BA . Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing . Nature Communications . 3 . 1102 . 2012 . 23033078 . 3493636 . 10.1038/ncomms2077 . 2012NatCo...3.1102M .
  22. Shi N, Ye S, Alam A, Chen L, Jiang Y . Atomic structure of a Na+- and K+-conducting channel . Nature . 440 . 7083 . 570–4 . March 2006 . 16467789 . 10.1038/nature04508 . 2006Natur.440..570S . 4355500 .
  23. Durell SR, Guy HR . A family of putative Kir potassium channels in prokaryotes . BMC Evolutionary Biology . 1 . 14 . 2001 . 11806753 . 64639 . 10.1186/1471-2148-1-14 . free .
  24. Derebe MG, Sauer DB, Zeng W, Alam A, Shi N, Jiang Y . Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites . Proceedings of the National Academy of Sciences of the United States of America . 108 . 2 . 598–602 . January 2011 . 21187421 . 3021048 . 10.1073/pnas.1013636108 . 2011PNAS..108..598D . free .
  25. Sauer DB, Zeng W, Raghunathan S, Jiang Y . Protein interactions central to stabilizing the K+ channel selectivity filter in a four-sited configuration for selective K+ permeation . Proceedings of the National Academy of Sciences of the United States of America . 108 . 40 . 16634–9 . October 2011 . 21933962 . 3189067 . 10.1073/pnas.1111688108 . 2011PNAS..10816634S . free .