In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution.
Perhaps the chief use of the inverse gamma distribution is in Bayesian statistics, where the distribution arises as the marginal posterior distribution for the unknown variance of a normal distribution, if an uninformative prior is used, and as an analytically tractable conjugate prior, if an informative prior is required. It is common among some Bayesians to consider an alternative parametrization of the normal distribution in terms of the precision, defined as the reciprocal of the variance, which allows the gamma distribution to be used directly as a conjugate prior. Other Bayesians prefer to parametrize the inverse gamma distribution differently, as a scaled inverse chi-squared distribution.
x>0
f(x;\alpha,\beta) =
\beta\alpha | |
\Gamma(\alpha) |
(1/x)\alpha\exp\left(-\beta/x\right)
\alpha
\beta
\Gamma( ⋅ )
Unlike the Gamma distribution, which contains a somewhat similar exponential term,
\beta
f(x;\alpha,\beta)=
f(x/\beta;\alpha,1) | |
\beta |
The cumulative distribution function is the regularized gamma function
F(x;\alpha,\beta)=
| |||||
\Gamma(\alpha) |
=Q\left(\alpha,
\beta | |
x |
\right)
where the numerator is the upper incomplete gamma function and the denominator is the gamma function. Many math packages allow direct computation of
Q
Provided that
\alpha>n
n
E[Xn]=\betan
\Gamma(\alpha-n) | |
\Gamma(\alpha) |
=
\betan | |
(\alpha-1) … (\alpha-n) |
.
The inverse gamma distribution has characteristic function where
K\alpha
For
\alpha>0
\beta>0
E[ln(X)]=ln(\beta)-\psi(\alpha)
E[X-1]=
\alpha | |
\beta |
,
The information entropy is
\begin{align} \operatorname{H}(X)&=\operatorname{E}[-ln(p(X))]\\ &=\operatorname{E}\left[-\alphaln(\beta)+ln(\Gamma(\alpha))+(\alpha+1)ln(X)+
\beta | |
X |
\right]\\ &=-\alphaln(\beta)+ln(\Gamma(\alpha))+(\alpha+1)ln(\beta)-(\alpha+1)\psi(\alpha)+\alpha\\ &=\alpha+ln(\beta\Gamma(\alpha))-(\alpha+1)\psi(\alpha). \end{align}
where
\psi(\alpha)
The Kullback-Leibler divergence of Inverse-Gamma(αp, βp) from Inverse-Gamma(αq, βq) is the same as the KL-divergence of Gamma(αp, βp) from Gamma(αq, βq):
DKL(\alphap,\betap;\alphaq,\betaq)=E\left[log
\rho(X) | |
\pi(X) |
\right]=E\left[log
\rho(1/Y) | |
\pi(1/Y) |
\right]=E\left[log
\rhoG(Y) | |
\piG(Y) |
\right],
where
\rho,\pi
\rhoG,\piG
Y
\begin{align} DKL(\alphap,\betap;\alphaq,\betaq)={}&(\alphap-\alphaq)\psi(\alphap)-log\Gamma(\alphap)+log\Gamma(\alphaq)+\alphaq(log\betap-log\betaq)+
\alpha | ||||
|
. \end{align}
X\simInv-Gamma(\alpha,\beta)
kX\simInv-Gamma(\alpha,k\beta)
k>0
X\simInv-Gamma(\alpha,\tfrac{1}{2})
X\simInv-\chi2(2\alpha)
X\simInv-Gamma(\tfrac{\alpha}{2},\tfrac{1}{2})
X\simScaledInv-\chi2(\alpha,\tfrac{1}{\alpha})
X\simrm{Inv-Gamma}(\tfrac{1}{2},\tfrac{c}{2})
X\simrm{Levy}(0,c)
X\simrm{Inv-Gamma}(1,c)
\tfrac{1}{X}\simrm{Exp}(c)
X\simGamma(\alpha,\beta)
\beta
\tfrac{1}{X}\simInv-Gamma(\alpha,\beta)
X\simGamma(k,\theta)
\theta
1/X\simInv-Gamma(k,1/\theta)
Let
X\simGamma(\alpha,\beta)
fX(x)=
\beta\alpha | |
\Gamma(\alpha) |
x\alpha-1e-\beta
x>0
Note that
\beta
Define the transformation
Y=g(X)=\tfrac{1}{X}
Y
\begin{align} fY(y)&=fX\left(g-1(y)\right)\left|
d | |
dy |
g-1(y)\right|\\[6pt] &=
\beta\alpha | |
\Gamma(\alpha) |
\left(
1 | |
y |
\right)\alpha-1\exp\left(
-\beta | |
y |
\right)
1 | |
y2 |
\\[6pt] &=
\beta\alpha | |
\Gamma(\alpha) |
\left(
1 | |
y |
\right)\alpha+1\exp\left(
-\beta | |
y |
\right)\\[6pt] &=
\beta\alpha | |
\Gamma(\alpha) |
\left(y\right)-\alpha-1\exp\left(
-\beta | |
y |
\right)\\[6pt] \end{align}
Note that
\beta
\beta
\begin{align} | f\beta(y/\beta) |
\beta |
&=
1 | |
\beta |
\beta\alpha | |
\Gamma(\alpha) |
\left(
y | |
\beta |
\right)-\alpha-1\exp(-y)\\[6pt] &=
1 | |
\Gamma(\alpha) |
\left(y\right)-\alpha-1\exp(-y)\\[6pt] &=f\beta=1(y) \end{align}
\alpha=0.5