Internet of vehicles explained
Internet of vehicles (IoV) is a network of vehicles equipped with sensors, software, and the technologies that mediate between these with the aim of connecting & exchanging data over the Internet according to agreed standards.[1] [2] IoV evolved from Vehicular Ad Hoc Networks ("VANET", a category of mobile ad hoc network used for communication between vehicles and roadside systems),[3] and is expected to ultimately evolve into an "Internet of autonomous vehicles".[4] It is expected that IoV will be one of the enablers for an autonomous, connected, electric, and shared (ACES) Future Mobility.[5]
Road vehicles as a product category depend upon numerous technology categories from real-time analytics to commodity sensors and embedded systems. For these to operate in symphony the IoV ecosystem is dependent upon modern infrastructure and architectures that distribute computational burden across multiple processing units in a network.[6] In the consumer market, IoV technology is most typically referenced in discussions of smart cities and driverless cars.[7] Many of these architectures depend for their functionality upon open-source software & systems,[8] for instance Subaru whose vehicles' infotainment platform is able to detect a driver's wakefulness and sound an alarm to pull over for a rest.[9]
As with other internets connecting real user/consumer experiences with networks to which those user/consumers have no access or control, concerns abound as to risks inherent in the growth of IoV, especially in the areas of privacy and security, and consequently industry and governmental moves to address these concerns have begun including the development of international standards & methods of real-time analysis.[10] These are receiving attention from organisations including the Linux Foundation’s ELISA (Enabling Linux In Safety Applications), the connected vehicles initiative at the Institute of Electrical and Electronics Engineers (IEEE), and the Connected Car Working Group at the Cellular Telecommunications Industry Association (CTIA).[8]
See also
Notes and References
- Lee . Eun-Kyu . Gerla . Mario . Pau . Giovanni . Lee . Uichin . Lim . Jae-Han . Internet of Vehicles: From intelligent grid to autonomous cars and vehicular fogs . International Journal of Distributed Sensor Networks . September 2016 . 12 . 9 . 155014771666550 . 10.1177/1550147716665500. free . 11585/617668 . free .
- Khelifi . Adel . Abu Talib . Manar . Nouichi . Douae . Eltawil . Mohamed Salah . Toward an Efficient Deployment of Open Source Software in the Internet of Vehicles Field . Arabian Journal for Science and Engineering . 2019 . 44 . 2019 . 8939–8961 . 10.1007/s13369-019-03870-2 . 164632020 . 27 December 2020.
- Sakiz . Fatih . Sen . Sevil . A survey of attacks and detection mechanisms on intelligent transportation systems: VANETs and IoV . Ad Hoc Networks . June 2017 . 61 . 33–50 . 10.1016/j.adhoc.2017.03.006.
- Book: Gerla . M. . Lee . E. . Pau . G. . Lee . U. . 2014 IEEE World Forum on Internet of Things (WF-IoT) . Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds . March 2014 . 241–246 . 10.1109/WF-IoT.2014.6803166. 978-1-4799-3459-1 . 206866025 . https://hal.archives-ouvertes.fr/hal-01215589/file/Gerla2014.pdf .
- Book: Hamid, Umar Zakir Abdul . Internet of Vehicle (IoV) Applications in Expediting the Implementation of Smart Highway of Autonomous Vehicle: A Survey . Performability in Internet of Things . EAI/Springer Innovations in Communication and Computing . 2019 . 137–157 . 10.1007/978-3-319-93557-7_9 . 978-3-319-93556-0 . 69362954 . https://www.researchgate.net/publication/327188195 . etal. 14 January 2022.
- Nahri . Mohamed . Boulmakoul . Azedine . Karim . Lamia . Lbath . Ahmed . IoV distributed architecture for real-time traffic data analytics . Procedia Computer Science . 2018 . 130 . 480–487 . 10.1016/j.procs.2018.04.055. free .
- Maglaras . Leandros . Al-Bayatti . Ali . He . Ying . Wagner . Isabel . Janicke . Helge . Social Internet of Vehicles for Smart Cities . Journal of Sensor and Actuator Networks . 6 February 2016 . 5 . 1 . 3 . 10.3390/jsan5010003. free . 2086/12656 . free .
- Web site: Canning . Tom . Why the connected car rides on open source . VentureBeat . 27 December 2020 . 23 August 2020.
- Web site: Takahashi . Dean . Subaru Legacy 2020 review: Sensors that detect a drowsy or distracted driver . VentureBeat . 27 December 2020 . 9 February 2020.
- Book: Ahmadian . Amir Shayan . Peldszus . Sven . Ramadan . Qusai . Jürjens . Jan . Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering . Model-based privacy and security analysis with CARiSMA . 21 August 2017 . 989–993 . 10.1145/3106237.3122823. 9781450351058 . 28115555 .