In differential geometry, the integration along fibers of a k-form yields a
(k-m)
Let
\pi:E\toB
\alpha
(\pi*\alpha)b(w1,...,wk-m)=
\int | |
\pi-1(b) |
\beta
where
\beta
\pi-1(b)
m
\widetilde{wi}
wi
E
\beta(v1,...,vm)=\alpha(v1,...,vm,\widetilde{w1},...,\widetilde{wk-m
(To see
b\mapsto(\pi*\alpha)b
Then
\pi*
\Omegak(E)\to\Omegak-m(B)
[d,\int]=0
\pi*:\operatorname{H}k(E;R)\to\operatorname{H}k-m(B;R).
This is also called the fiber integration.
Now, suppose
\pi
0\toK\to\Omega*(E)\overset{\pi*}\to\Omega*(B)\to0
R
\operatorname{H}k(B)\simeq\operatorname{H}k+m(K)
… → \operatorname{H}k(B)\overset{\delta}\to\operatorname{H}k+m+1(B)\overset{\pi*} → \operatorname{H}k+m+1(E)\overset{\pi*} → \operatorname{H}k+1(B) → …
Let
\pi:M x [0,1]\toM
M=Rn
xj
\alpha=f
dx | |
i1 |
\wedge...\wedge
dx | |
ik |
+gdt\wedge
dx | |
j1 |
\wedge...\wedge
dx | |
jk-1 |
.
Then, at each point in M,
\pi*(\alpha)=\pi*(gdt\wedge
dx | |
j1 |
\wedge...\wedge
dx | |
jk-1 |
)=\left(
1 | |
\int | |
0 |
g( ⋅ ,t)dt\right)
{dx | |
j1 |
\wedge...\wedge
dx | |
jk-1 |
From this local calculation, the next formula follows easily (see Poincaré_lemma#Direct_proof): if
\alpha
M x [0,1],
\pi*(d\alpha)=\alpha1-\alpha0-d\pi*(\alpha)
where
\alphai
\alpha
M x \{i\}
As an application of this formula, let
f:M x [0,1]\toN
h=\pi*\circf*
d\circh+h\circd=
* | |
f | |
1 |
-
*: | |
f | |
0 |
\Omegak(N)\to\Omegak(M),
which implies
f1,f0
ft:U\toU,x\mapstotx
\operatorname{H}k(U;R)=\operatorname{H}k(pt;R)
Given a vector bundle π : E → B over a manifold, we say a differential form α on E has vertical-compact support if the restriction
\alpha| | |
\pi-1(b) |
*(E) | |
\Omega | |
vc |
\pi*:
*(E) | |
\Omega | |
vc |
\to\Omega*(B).
The following is known as the projection formula.[2] We make
*(E) | |
\Omega | |
vc |
\Omega*(B)
\alpha ⋅ \beta=\alpha\wedge\pi*\beta
Proof: 1. Since the assertion is local, we can assume π is trivial: i.e.,
\pi:E=B x Rn\toB
tj
\alpha=gdt1\wedge … \wedgedtn\wedge\pi*η
\pi*
\pi*(\alpha\wedge\pi*\beta)=\left(
\int | |
Rn |
g( ⋅ ,t1,...,tn)dt1...dtn\right)η\wedge\beta=\pi*(\alpha)\wedge\beta.
\square
\alpha=gdt\wedged
x | |
j1 |
\wedge … \wedged
x | |
jk-1 |
\partial | |
xj |
\beta(\partialt)=\alpha(\partialt,
\partial | |||||
|
,...,
\partial | |||||
|
)=g(b,t)
\pi*(\alpha)b(\partial
|
,...,
\partial | |||||
|
)=\int[0,\beta=
1 | |
\int | |
0 |
g(b,t)dt.
\pi*(\alpha)b=\left(
1 | |
\int | |
0 |
g(b,t)dt\right)d
x | |
j1 |
\wedge … \wedged
x | |
jk-1 |
.
\pi*(\alpha)=0