Derivative Explained
Derivative should not be confused with Derivation (differential algebra).
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity of change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation.
There are multiple different notations for differentiation, two of the most commonly used being Leibniz notation and prime notation. Leibniz notation, named after Gottfried Wilhelm Leibniz, is represented as the ratio of two differentials, whereas prime notation is written by adding a prime mark. Higher order notations represent repeated differentiation, and they are usually denoted in Leibniz notation by adding superscripts to the differentials, and in prime notation by adding additional prime marks. The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.
Derivatives can be generalized to functions of several real variables. In this generalization, the derivative is reinterpreted as a linear transformation whose graph is (after an appropriate translation) the best linear approximation to the graph of the original function. The Jacobian matrix is the matrix that represents this linear transformation with respect to the basis given by the choice of independent and dependent variables. It can be calculated in terms of the partial derivatives with respect to the independent variables. For a real-valued function of several variables, the Jacobian matrix reduces to the gradient vector.
Definition
As a limit
is
differentiable at a point
of its
domain, if its domain contains an open interval containing
, and the
limitexists. This means that, for every positive
real number
, there exists a positive real number
such that, for every
such that
and
then
is defined, and
where the vertical bars denote the
absolute value. This is an example of the (ε, δ)-definition of limit.
If the function
is differentiable at
, that is if the limit
exists, then this limit is called the
derivative of
at
. Multiple notations for the derivative exist. The derivative of
at
can be denoted
, read as "
prime of
"; or it can be denoted
, read as "the derivative of
with respect to
at
" or "
by (or over)
at
". See below. If
is a function that has a derivative at every point in its
domain, then a function can be defined by mapping every point
to the value of the derivative of
at
. This function is written
and is called the
derivative function or the
derivative of
. The function
sometimes has a derivative at most, but not all, points of its domain. The function whose value at
equals
whenever
is defined and elsewhere is undefined is also called the derivative of
. It is still a function, but its domain may be smaller than the domain of
.
For example, let
be the squaring function:
. Then the quotient in the definition of the derivative is
The division in the last step is valid as long as
. The closer
is to
, the closer this expression becomes to the value
. The limit exists, and for every input
the limit is
. So, the derivative of the squaring function is the doubling function:
.
The ratio in the definition of the derivative is the slope of the line through two points on the graph of the function
, specifically the points
and
. As
is made smaller, these points grow closer together, and the slope of this line approaches the limiting value, the slope of the
tangent to the graph of
at
. In other words, the derivative is the slope of the tangent.
Using infinitesimals
One way to think of the derivative is as the ratio of an infinitesimal change in the output of the function
to an infinitesimal change in its input. In order to make this intuition rigorous, a system of rules for manipulating infinitesimal quantities is required. The system of
hyperreal numbers is a way of treating
infinite and infinitesimal quantities. The hyperreals are an
extension of the
real numbers that contain numbers greater than anything of the form
for any finite number of terms. Such numbers are infinite, and their
reciprocals are infinitesimals. The application of hyperreal numbers to the foundations of calculus is called
nonstandard analysis. This provides a way to define the basic concepts of calculus such as the derivative and integral in terms of infinitesimals, thereby giving a precise meaning to the
in the Leibniz notation. Thus, the derivative of
becomes
for an arbitrary infinitesimal
, where
denotes the
standard part function, which "rounds off" each finite hyperreal to the nearest real. Taking the squaring function
as an example again,
Continuity and differentiability
If
is
differentiable at
, then
must also be
continuous at
. As an example, choose a point
and let
be the
step function that returns the value 1 for all
less than
, and returns a different value 10 for all
greater than or equal to
. The function
cannot have a derivative at
. If
is negative, then
is on the low part of the step, so the secant line from
to
is very steep; as
tends to zero, the slope tends to infinity. If
is positive, then
is on the high part of the step, so the secant line from
to
has slope zero. Consequently, the secant lines do not approach any single slope, so the limit of the difference quotient does not exist. However, even if a function is continuous at a point, it may not be differentiable there. For example, the
absolute value function given by
is continuous at
, but it is not differentiable there. If
is positive, then the slope of the secant line from 0 to
is one; if
is negative, then the slope of the secant line from
to
is
. This can be seen graphically as a "kink" or a "cusp" in the graph at
. Even a function with a smooth graph is not differentiable at a point where its
tangent is vertical: For instance, the function given by
is not differentiable at
. In summary, a function that has a derivative is continuous, but there are continuous functions that do not have a derivative.
Most functions that occur in practice have derivatives at all points or almost every point. Early in the history of calculus, many mathematicians assumed that a continuous function was differentiable at most points. Under mild conditions (for example, if the function is a monotone or a Lipschitz function), this is true. However, in 1872, Weierstrass found the first example of a function that is continuous everywhere but differentiable nowhere. This example is now known as the Weierstrass function. In 1931, Stefan Banach proved that the set of functions that have a derivative at some point is a meager set in the space of all continuous functions. Informally, this means that hardly any random continuous functions have a derivative at even one point.[1]
Notation
and
, which were introduced by
Gottfried Wilhelm Leibniz in 1675. It is still commonly used when the equation
is viewed as a functional relationship between
dependent and independent variables. The first derivative is denoted by
, read as "the derivative of
with respect to
". This derivative can alternately be treated as the application of a
differential operator to a function,
Higher derivatives are expressed using the notation
for the
-th derivative of
. These are abbreviations for multiple applications of the derivative operator; for example,
Unlike some alternatives, Leibniz notation involves explicit specification of the variable for differentiation, in the denominator, which removes ambiguity when working with multiple interrelated quantities. The derivative of a
composed function can be expressed using the
chain rule: if
and
then
[2] Another common notation for differentiation is by using the prime mark in the symbol of a function
. This is known as
prime notation, due to
Joseph-Louis Lagrange. The first derivative is written as
, read as "
prime of
", or
, read as "
prime". Similarly, the second and the third derivatives can be written as
and
, respectively. For denoting the number of higher derivatives beyond this point, some authors use Roman numerals in
superscript, whereas others place the number in parentheses, such as
or
The latter notation generalizes to yield the notation
for the th derivative of
.
In Newton's notation or the dot notation, a dot is placed over a symbol to represent a time derivative. If
is a function of
, then the first and second derivatives can be written as
and
, respectively. This notation is used exclusively for derivatives with respect to time or
arc length. It is typically used in
differential equations in
physics and
differential geometry. However, the dot notation becomes unmanageable for high-order derivatives (of order 4 or more) and cannot deal with multiple independent variables.
Another notation is D-notation, which represents the differential operator by the symbol
The first derivative is written
and higher derivatives are written with a superscript, so the
-th derivative is
This notation is sometimes called
Euler notation, although it seems that
Leonhard Euler did not use it, and the notation was introduced by
Louis François Antoine Arbogast. To indicate a partial derivative, the variable differentiated by is indicated with a subscript, for example given the function
its partial derivative with respect to
can be written
or
Higher partial derivatives can be indicated by superscripts or multiple subscripts, e.g.
and
.
Rules of computation
See main article: Differentiation rules. In principle, the derivative of a function can be computed from the definition by considering the difference quotient and computing its limit. Once the derivatives of a few simple functions are known, the derivatives of other functions are more easily computed using rules for obtaining derivatives of more complicated functions from simpler ones. This process of finding a derivative is known as differentiation.
Rules for basic functions
The following are the rules for the derivatives of the most common basic functions. Here,
is a real number, and
is
the mathematical constant approximately .
[3]
, for
, for
, for
\tan(x)=\sec2(x)=
=1+\tan2(x)
} , for
} , for
}
Rules for combined functions
Given that the
and
are the functions. The following are some of the most basic rules for deducing the derivative of functions from derivatives of basic functions.
[4]
is constant, then for all
,
(\alphaf+\betag)'=\alphaf'+\betag'
for all functions
and
and all real numbers
and
.
for all functions
and
. As a special case, this rule includes the fact
whenever
is a constant because
by the constant rule.
for all functions
and
at all inputs where .
, then
Computation example
The derivative of the function given by
f(x)=x4+\sin\left(x2\right)-ln(x)ex+7
is
Here the second term was computed using the
chain rule and the third term using the
product rule. The known derivatives of the elementary functions
,
,
,
, and
, as well as the constant
, were also used.
Higher-order derivatives
Higher order derivatives means that a function is differentiated repeatedly. Given that
is a differentiable function, the derivative of
is the first derivative, denoted as
. The derivative of
is the
second derivative, denoted as
, and the derivative of
is the
third derivative, denoted as
. By continuing this process, if it exists, the th derivative as the derivative of the th derivative or the
derivative of order
. As has been discussed above, the generalization of derivative of a function
may be denoted as
. A function that has
successive derivatives is called
times differentiable. If the th derivative is continuous, then the function is said to be of differentiability class
. A function that has infinitely many derivatives is called
infinitely differentiable or
smooth. One example of the infinitely differentiable function is
polynomial; differentiate this function repeatedly results the
constant function, and the infinitely subsequent derivative of that function are all zero.
In one of its applications, the higher-order derivatives may have specific interpretations in physics. Suppose that a function represents the position of an object at the time. The first derivative of that function is the velocity of an object with respect to time, the second derivative of the function is the acceleration of an object with respect to time, and the third derivative is the jerk.
In other dimensions
See also: Vector calculus and Multivariable calculus.
Vector-valued functions
of a real variable sends real numbers to vectors in some
vector space
. A vector-valued function can be split up into its coordinate functions
, meaning that
y=(y1(t),y2(t),...,yn(t))
. This includes, for example,
parametric curves in
or
. The coordinate functions are real-valued functions, so the above definition of derivative applies to them. The derivative of
is defined to be the
vector, called the
tangent vector, whose coordinates are the derivatives of the coordinate functions. That is,
if the limit exists. The subtraction in the numerator is the subtraction of vectors, not scalars. If the derivative of
exists for every value of
, then
is another vector-valued function.
Partial derivatives
See main article: Partial derivative. Functions can depend upon more than one variable. A partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant. Partial derivatives are used in vector calculus and differential geometry. As with ordinary derivatives, multiple notations exist: the partial derivative of a function
with respect to the variable
is variously denoted byamong other possibilities. It can be thought of as the rate of change of the function in the
-direction. Here
∂ is a rounded
d called the
partial derivative symbol. To distinguish it from the letter
d, ∂ is sometimes pronounced "der", "del", or "partial" instead of "dee". For example, let
, then the partial derivative of function
with respect to both variables
and
are, respectively:
In general, the partial derivative of a function
in the direction
at the point
is defined to be:
This is fundamental for the study of the functions of several real variables. Let
be such a
real-valued function. If all partial derivatives
with respect to
are defined at the point
, these partial derivatives define the vector
which is called the
gradient of
at
. If
is differentiable at every point in some domain, then the gradient is a
vector-valued function
that maps the point
to the vector
. Consequently, the gradient determines a
vector field.
Directional derivatives
See main article: Directional derivative.
If
is a real-valued function on
, then the partial derivatives of
measure its variation in the direction of the coordinate axes. For example, if
is a function of
and
, then its partial derivatives measure the variation in
in the
and
direction. However, they do not directly measure the variation of
in any other direction, such as along the diagonal line
. These are measured using directional derivatives. Choose a vector
, then the
directional derivative of
in the direction of
at the point
is:
If all the partial derivatives of
exist and are continuous at
, then they determine the directional derivative of
in the direction
by the formula:
Total derivative, total differential and Jacobian matrix
See main article: Total derivative.
When
is a function from an open subset of
to
, then the directional derivative of
in a chosen direction is the best linear approximation to
at that point and in that direction. However, when
, no single directional derivative can give a complete picture of the behavior of
. The total derivative gives a complete picture by considering all directions at once. That is, for any vector
starting at
, the linear approximation formula holds:
Similarly with the single-variable derivative,
is chosen so that the error in this approximation is as small as possible. The total derivative of
at
is the unique linear transformation
such that
Here
is a vector in
, so the norm in the denominator is the standard length on
. However,
is a vector in
, and the norm in the numerator is the standard length on
. If
is a vector starting at
, then
is called the
pushforward of
by
.
If the total derivative exists at
, then all the partial derivatives and directional derivatives of
exist at
, and for all
,
is the directional derivative of
in the direction
. If
is written using coordinate functions, so that
, then the total derivative can be expressed using the partial derivatives as a
matrix. This matrix is called the
Jacobian matrix of
at
:
Generalizations
See main article: Generalizations of the derivative.
The concept of a derivative can be extended to many other settings. The common thread is that the derivative of a function at a point serves as a linear approximation of the function at that point.
to
. The notion of the derivative of such a function is obtained by replacing real variables with complex variables in the definition. If
is identified with
by writing a complex number
as
, then a differentiable function from
to
is certainly differentiable as a function from
to
(in the sense that its partial derivatives all exist), but the converse is not true in general: the complex derivative only exists if the real derivative is
complex linear and this imposes relations between the partial derivatives called the
Cauchy–Riemann equations – see
holomorphic functions.
- Another generalization concerns functions between differentiable or smooth manifolds. Intuitively speaking such a manifold
is a space that can be approximated near each point
by a vector space called its
tangent space: the prototypical example is a
smooth surface in
. The derivative (or differential) of a (differentiable) map
between manifolds, at a point
in
, is then a
linear map from the tangent space of
at
to the tangent space of
at
. The derivative function becomes a map between the
tangent bundles of
and
. This definition is used in
differential geometry.
- Differentiation can also be defined for maps between vector space, such as Banach space, in which those generalizations are the Gateaux derivative and the Fréchet derivative.[5]
- One deficiency of the classical derivative is that very many functions are not differentiable. Nevertheless, there is a way of extending the notion of the derivative so that all continuous functions and many other functions can be differentiated using a concept known as the weak derivative. The idea is to embed the continuous functions in a larger space called the space of distributions and only require that a function is differentiable "on average".
- Properties of the derivative have inspired the introduction and study of many similar objects in algebra and topology; an example is differential algebra. Here, it consists of the derivation of some topics in abstract algebra, such as rings, ideals, field, and so on.
- The discrete equivalent of differentiation is finite differences. The study of differential calculus is unified with the calculus of finite differences in time scale calculus.
- The arithmetic derivative involves the function that is defined for the integers by the prime factorization. This is an analogy with the product rule.
See also
References
- Barbeau . E. J. . Remarks on an arithmetic derivative . . 4 . 1961 . 2 . 117–122 . 10.4153/CMB-1961-013-0 . 0101.03702 . free.
- . See the English version here.
External links
"Newton, Leibniz, and Usain Bolt"
Notes and References
- , cited in .
- In the formulation of calculus in terms of limits, various authors have assigned the
symbol various meanings. Some authors such as, p. 119 and, p. 177 do not assign a meaning to
by itself, but only as part of the symbol . Others define
as an independent variable, and define
by In non-standard analysis
is defined as an infinitesimal. It is also interpreted as the exterior derivative of a function
. See differential (infinitesimal) for further information.
- . See p. 133 for the power rule, p. 115 - 116 for the trigonometric functions, p. 326 for the natural logarithm, p. 338 - 339 for exponential with base
, p. 343 for the exponential with base
, p. 344 for the logarithm with base
, and p. 369 for the inverse of trigonometric functions.
- For constant rule and sum rule, see, respectively. For the product rule, quotient rule, and chain rule, see, respectively. For the special case of the product rule, that is, the product of a constant and a function, see .
- . See p. 209 for the Gateaux derivative, and p. 211 for the Fréchet derivative.